Healthy Urban Atmospheres

Observing and modelling particle number concentrations inside vehicles in busy traffic

Ian Longley, Sharleen Harper, Gustavo Olivares, Nick Talbot, Guy Coulson
National Institute of Water & Atmospheric Research
Auckland, New Zealand

www.niwa.co.nz
Observing and modelling particle number concentrations inside vehicles in busy traffic

Particle number concentration exposure diary

Measurements using TSI P-Trak in Manchester, UK

(Acknowledgements Anna Leavey, formerly of University of Manchester)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Contribution to inhaled dose

Constant breathing rate

Variable breathing rate

Commuting duration 76 minutes, or 5% of day

Data from Manchester-based pilot study
Observing and modelling particle number concentrations inside vehicles in busy traffic

New Zealand, Auckland, cars and health

- 1/3 of estimated health costs due to air pollution in NZ is incurred in Auckland
- Auckland has 1.3m people and 1m vehicles
- 90% commuting trips in Auckland by car
- 125,000 children in Auckland travel to school by car

![Graph showing car ownership per 1,000 population for selected countries in 2005.](image)

Source: "Pocket World In Figures 2009", International Road Federation
*Or latest year available

Adapted from Massal et al. (60.)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Auckland-based study approach (to date)

Long-term aim of systematic semi-empirical prediction of exposure of large population

1. Trials: exploratory in-car observations in Auckland traffic
2. Simple high-res air exchange modelling
3. Semi-controlled study of car-related variables
4. Intensive observations of commuting in Auckland rush-hour (PNC, PM, CO)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Observations in “normal” conditions
Observations of in-vehicle PNC in ‘normal’ conditions

- TSI P-Trak in inter-peak studies
- TSI 3007 in peak traffic studies (Aug 2009)
- Honda Civic, Toyota Camry, Ford Falcon
- Total dataset: 15 hrs over 8 days
- “normal” ventilation

- Inter-peak traffic:
 - Mean of all motorway segments: 27,000 cm$^{-3}$
 - Mean of all CBD segments: 20,000 cm$^{-3}$
 - Mean of all non-CBD segments: 14,000 cm$^{-3}$
 - Typical background during campaign: 3,000 cm$^{-3}$

- Peak traffic:
 - Mean of all motorway segments: 63,000 cm$^{-3}$
 - Mean of all non-motorway segments: 26,000 cm$^{-3}$ (background ~4,000 cm$^{-3}$)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Example study routes (from 2007 pilot study)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Initial trial example, Honda Civic
Observing and modelling particle number concentrations inside vehicles in busy traffic

1. internal < external, as vehicle acts as band-pass filter for brief spikes
2. highest values in congested traffic at Central Motorway Junction (CMJ) and suburban high street (Avondale)
3. next highest concentrations on free-flowing motorways
4. ΔN much lower on non-motorway sections – external less spiky
Observing and modelling particle number concentrations inside vehicles in busy traffic

WAIVE (Waitakere to Auckland In-Vehicle Exposure) 2009
Observing and modelling particle number concentrations inside vehicles in busy traffic

- External concentrations elevated by order of magnitude for 18 seconds
- Internal concentrations elevated 7x (initially), and remain >external for 4 minutes/3.5 km

Observational features #1: response to intersections

![Graph showing PNC/cm³ over time elapsed in minutes](image)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Observational features #2: encounters with gross emitters

- 3 minutes behind bus doubled journey mean external PNC
Observing and modelling particle number concentrations inside vehicles in busy traffic

Experimental determination of air exchange rate
Observing and modelling particle number concentrations inside vehicles in busy traffic

Experimental determination of AER

1st-order infiltration model:
\[\lambda = AV + B = \frac{\partial N}{\partial t}/-\Delta N \]

\(V = \text{speed} \), and \(A \) and \(B \) are empirically derived constants describing “leakiness” of the vehicle

For typical conditions \(\lambda \sim 1 \text{ min}^{-1} \)
Observing and modelling particle number concentrations inside vehicles in busy traffic

Initial trial: effect of ventilation settings on journey means

- Reduction in AER has non-linear effect on exposure
- Effect depends on characteristics of the trip (traffic encounters/fresh particle injection events)
- Some evidence of I/O >1 for certain trip/ventilation profiles
Observing and modelling particle number concentrations inside vehicles in busy traffic

Air exchange modelling
Observing and modelling particle number concentrations inside vehicles in busy traffic

Air & Particles Exchange Model (APEX)

Model interior time series based on exterior and speed
Interior obs used as validation only (no feedback into model)

APEX v.1: 1st-order infiltration model: \(\frac{dN}{dt} = -\lambda \Delta N \), where \(\lambda = f(V) \)
Observing and modelling particle number concentrations inside vehicles in busy traffic

v.1 Model weaknesses

- Model missing lag in internal response
- Model under-representing initial rapid decay post-injection (when PNC:PM$_{10}$ ratio was elevated – not shown)
- Interpretation: increased removal of UFP during high concentrations (gross-emitter encounter?) or within first ~20 seconds after injection
Observing and modelling particle number concentrations inside vehicles in busy traffic

Terrace Tunnel model initialisation

- Trialled adding simple removal (deposition) and lag (mixing) terms
- Initialised on data from drive-throughs of Terrace Tunnel (Wellington)
- Lag based on CO data, removal based on PNC (Ptrak) data
Observing and modelling particle number concentrations inside vehicles in busy traffic

Remaining weaknesses of model (v.3)

\[\frac{dN(t)}{dt} = (A\nu(t) + B)(N_{out}(t - t_{lag}) - N(t)) - kN(t) \]

- Lag term \((t_{lag} = 10 \text{ s})\) is arbitrary
- Particle deposition term \((k = 0.009 \text{ s}^{-1})\) should be particle size-dependent
- Currently based on data from Ptrak with uncertain response < 50 nm
Observing and modelling particle number concentrations inside vehicles in busy traffic

Where next for the modelling?

Air exchange modelling:
- Size-dependent processes (SMPS?)
- More complex process modelling
- Intercomparison with simpler “black box” (e.g. band-pass filter) modelling

Operational modelling:
- Relate statistical properties of external concentrations to traffic data and emissions modelling
- Developing probabilistic modelling for population in-transit exposure
Observing and modelling particle number concentrations inside vehicles in busy traffic

Proposed model integration

Ventilation variable model

Aerosol process sub-model

Air & Particles Exchange model

Probabilistic external profile model

Simplified in-car response model

Personal exposure assessment model

Land-use planning model

Trip assignment model

Traffic model

Emission model
Observing and modelling particle number concentrations inside vehicles in busy traffic

Thanks for your attention

This research was funded by

NIWA
New Zealand Transport Agency
Foundation for Research, Science & Technology

Kind thanks to Auckland Regional Council for loan of one of the P-Traks