Port of Nelson

Baseline survey for non-indigenous marine species (Research Project ZBS2000/04)

Biosecurity New Zealand Technical Paper No: 2005/02

Prepared for BNZ Post-clearance Directorate by Graeme Inglis, Nick Gust, Isla Fitridge, Oliver Floerl, Chris Woods, Barbara Hayden, Graham Fenwick

NIWA Taihoro Nukurangi

ISBN No: 0-478-07925-7 ISSN No: 1176-838X

March 2006

Disclaimer

While every effort has been made to ensure the information in this publication is accurate, the Ministry of Agriculture and Forestry does not accept any responsibility or liability for error or fact omission, interpretation or opinion which may be present, nor for the consequences of any decisions based on this information.

Any view or opinions expressed do not necessarily represent the official view of the Ministry of Agriculture and Forestry.

The information in this report and any accompanying documentation is accurate to the best of the knowledge and belief of the National Institute of Water & Atmospheric Research Ltd (NIWA) acting on behalf of the Ministry of Agriculture and Forestry. While NIWA has exercised all reasonable skill and care in preparation of information in this report, neither NIWA nor the Ministry of Agriculture and Forestry accept any liability in contract, tort or otherwise for any loss, damage, injury, or expense, whether direct, indirect or consequential, arising out of the provision of information in this report.

Requests for further copies should be directed to:

Publication Adviser MAF Information Bureau P O Box 2526 WELLINGTON

Telephone: (04) 474 4100 Facsimile: (04) 474 4111

This publication is also available on the MAF website at www.maf.govt.nz/publications

© Crown Copyright - Ministry of Agriculture and Forestry

Contents

Executive summary	1
Introduction	3
Biological baseline surveys for non-indigenous marine species	3
Description of the Port of Nelson	5
Port operation and shipping movements	6
Physical environment of nelson harbour	7
Existing biological information	8
Survey methods	10
Survey method development	10
Diver observations and collections on wharf piles	10
Benthic infauna	10
Epibenthos	12
Sediment sampling for cyst-forming species	12
Mobile epibenthos	13
Sampling effort	14
Sorting and identifying specimens	14
Definitions of species categories	17
Survey results	18
Native species	20
Cryptogenic species	20
Non-indigenous species	20
Species indeterminata	32
Notifiable and unwanted species	32
Species new to new zealand	33
Cyst-forming species	33
Possible vectors for the introduction of non-indigenous species to the port	33

Comparison with other ports		33
Assessment o	f the risk of new introductions to port	36
Assessment o	f translocation risk for introduced species found in the port	36
Management	of existing non-indigenous species in the port	37
Prevention of	new introductions	37
Conclusions a	and recommendations	38
Acknowledge	ments	39
References		39
Tables		43
Appendix 1:	Specialists engaged to identify specimens obtained from the New Zealand Posurveys.	ort
Appendix 2:	Generic descriptions of representative groups of the main marine phyla collected during sampling.	
Appendix 3:	Criteria for assigning non-indigenous status to species sampled from the Port of Nelson.	t
Appendix 4.	Geographic locations of the sample sites in the Port of Nelson	
Appendix 5a:	Results from the diver collections and pile scrapings.	
Appendix 5b:	Results from the benthic grab samples.	
Appendix 5c:	Results from the benthic sled samples.	
Appendix 5d:	Results from the dinoflagellate cyst core samples.	
Appendix 5e:	Results from the fish trap samples.	
Appendix 5f:	Results from the crab trap samples.	
Appendix 5g:	Results from the starfish trap samples.	
Appendix 5h:	Results from the shrimp trap samples.	

Executive summary

This report describes the results of a January 2002 survey to provide a baseline inventory of native, non indigenous and cryptogenic marine species within the Port of Nelson.

- The survey is part of a nationwide investigation of native and non-native marine biodiversity in 13 international shipping ports and three marinas of first entry for yachts entering New Zealand from overseas.
- Sampling methods used in these surveys were based on protocols developed by the Australian Centre for Research on Introduced Marine Pests (CRIMP) for baseline surveys of non-indigenous species in ports. Modifications were made to the CRIMP protocols for use in New Zealand port conditions.
- A wide range of sampling techniques was used to collect marine organisms from a range of habitats within the Port of Nelson. Fouling assemblages were scraped from hard substrata by divers, benthic assemblages were sampled using a sled and benthic grabs, and a gravity corer was used to sample for dinoflagellate cysts. Mobile predators and scavengers were sampled using baited fish, crab, starfish and shrimp traps.
- The distribution of sampling effort in the Port of Nelson was designed to maximise the chances of detecting non-indigenous species and concentrated on high-risk locations and habitats where non-indigenous species were most likely to be found.
- Organisms collected during the survey were sent to local and international taxonomic experts for identification.
- A total of 196 species or higher taxa was identified from the Nelson Port survey.
- They consisted of 133 native species, 14 non-indigenous species, 15 cryptogenic species (those whose geographic origins are uncertain) and 34 species indeterminata (taxa for which there is insufficient taxonomic or systematic information available to allow identification to species level).
- Six species of marine organisms collected from the Port of Nelson have not previously been described from New Zealand waters; three of these are newly discovered non-indigenous species (the bryozoan *Celleporaria nodulosa*, the hydroid *Lafoeina amirantensis* and the ascidian *Cnemidocarpa* sp.) and three are cryptogenic (the sponges *Halichondria* n. sp. 5, *Haliclona* n. sp. 1, *Haliclona* n. sp. 7).
- The 14 non-indigenous organisms described from the Port of Nelson included representatives of five phyla. The non-indigenous species detected (ordered alphabetically by phylum, class, order, family, genus and species) were: (Annelida) Polydora hoplura (Bryozoa) *Bugula flabellata, Cryptosula pallasiana, Conopeum seurati, Electra angulata, Celleporaria nodulosa, Schizoporella errata, Watersipora subtorquata* and *Anguinella palmate*, (Cnidaria) *Lafoeina amirantensis*, (Mollusca) *Crassostrea gigas, Theora lubrica* and (Urochordata) *Ciona intestinalis* and *Cnemidocarpa* sp.
- The only species from the Port of Nelson on the New Zealand register of unwanted organisms is the Asian kelp, *Undaria pinnatifida*. This alga is known to now have a wide distribution in southern and eastern New Zealand.

- The bivalve *Crassostrea gigas* was also present in the Port of Nelson and this species is listed on the Australian ABWMAC schedule of non-indigenous pest species.
- Most non-indigenous species located in the Port are likely to have been introduced to New Zealand accidentally by international shipping or through domestic translocation or spread from other locations in New Zealand.
- Approximately 79 % (11 of 14 species) of NIS in the Port of Nelson are likely to have been introduced in hull fouling assemblages, 7 % via ballast water and 14 % could have been introduced by either ballast water or hull fouling vectors.
- The predominance of hull fouling species in the introduced biota of the Port of Nelson (as opposed to ballast water introductions) is consistent with findings from similar port baseline studies overseas.

Introduction

Introduced (non-indigenous) plants and animals are now recognised as one of the most serious threats to the natural ecology of biological systems worldwide (Wilcove et al 1998, Mack et al 2000). Growing international trade and trans-continental travel mean that humans now intentionally and unintentionally transport a wide range of species outside their natural biogeographic ranges to regions where they did not previously occur. A proportion of these species are capable of causing serious harm to native biodiversity, industries and human health. Recent studies suggest that coastal marine environments may be among the most heavily invaded ecosystems, as a consequence of the long history of transport of marine species by international shipping (Carlton and Geller 1993, Grosholz 2002). Ocean-going vessels transport marine species in ballast water, in sea chests and other recesses in the hull structure, and as fouling communities attached to submerged parts of their hulls (Carlton 1985, 1999, AMOG Consulting 2002, Coutts et al 2003). These shipping transport mechanisms have enabled hundreds of marine species to spread worldwide and establish populations in shipping ports and coastal environments outside their natural range (Cohen and Carlton 1995, Hewitt et al 1999, Eldredge and Carlton 2002, Leppäkoski et al 2002).

Biosecurity¹ is important to all New Zealanders. New Zealand's geographic isolation makes it particularly vulnerable to marine introductions because more than 95% of its trade in commodities is transported by shipping, with several thousand international vessels arriving and departing from more than 13 ports and recreational boat marinas of first entry (Inglis 2001). The country's geographic remoteness also means that its marine biota and ecosystems have evolved in relative isolation from other coastal ecosystems. New Zealand's marine biota is as unique and distinctive as its terrestrial biota, with large numbers of native marine species occurring nowhere else in the world.

The numbers, identity, distribution and impacts of non-indigenous species in New Zealand's marine environments are poorly known. A recent review of existing records suggested that by 1998, at least 148 species had been deliberately or accidentally introduced to New Zealand's coastal waters, with around 90 % of these establishing permanent populations (Cranfield et al 1998). To manage the risk from these and other non-indigenous species, better information is needed on the current diversity and distribution of species present within New Zealand.

BIOLOGICAL BASELINE SURVEYS FOR NON-INDIGENOUS MARINE SPECIES

In 1997, the International Maritime Organisation (IMO) released guidelines for ballast water management (Resolution A868-20) encouraging countries to undertake biological surveys of port environments for potentially harmful non-indigenous aquatic species. As part of its comprehensive five-year Biodiversity Strategy package on conservation, environment, fisheries, and biosecurity released in 2000, the New Zealand Government funded a national series of baseline surveys. These surveys aimed to determine the identity, prevalence and distribution of native, cryptogenic and non-indigenous species in New Zealand's major shipping ports and other high risk points of entry. The government department responsible for biosecurity in the marine environment at the time, the New Zealand Ministry of Fisheries (MFish), commissioned NIWA to undertake biological baseline surveys in 13 ports and three marinas that are first ports of entry for vessels entering New Zealand from overseas (Fig 1). Marine biosecurity functions are now vested in Biosecurity New Zealand.

¹Biosecurity is the management of risks posed by introduced species to environmental, economic, social, and cultural values.

Figure 1: Commercial shipping ports in New Zealand where baseline nonindigenous species surveys have been conducted. Group 1 ports surveyed in the summer of 2001/2002 are indicated in bold and group 2 ports surveyed in the summer of 2002/2003 are indicated in plain font. Marinas were also surveyed for NIS in Auckland, Opua and Whangarei in 2002/2003.

The port surveys have two principal objectives:

- i. To provide a baseline assessment of native, non-indigenous and cryptogenic² species, and
- ii. To determine the distribution and relative abundance of a limited number of target species in shipping ports and other high risk points of entry for non-indigenous marine species.

The surveys will form a baseline for future monitoring of new incursions by non-indigenous marine species in port environments nationwide, and will assist international risk profiling of problem species through the sharing of information with other shipping nations.

This report summarises the results of the Port of Nelson survey and provides an inventory of species detected in the Port. It identifies and categorises native, introduced ("non-indigenous") and cryptogenic species. Organisms that could not be identified to species level are also listed as species indeterminata.

² "Cryptogenic:" species are species whose geographic origins are uncertain (Carlton 1996).

^{4 •} Port of Nelson: baseline survey for non-indigenous marine species

DESCRIPTION OF THE PORT OF NELSON

Port Nelson is situated at the southern end of a naturally protected inlet, on the eastern shoreline of Tasman Bay, on the central north coast of New Zealand's South Island (41° S 173° 17'E) (Figs. 2 and 3). Access to the wharves of the Port is gained through a deep dredged channel between Boulder Bank and Haulashore Island, south of Nelson (Thompson 1981). The 13 km natural breakwater protects the port in all weather conditions.

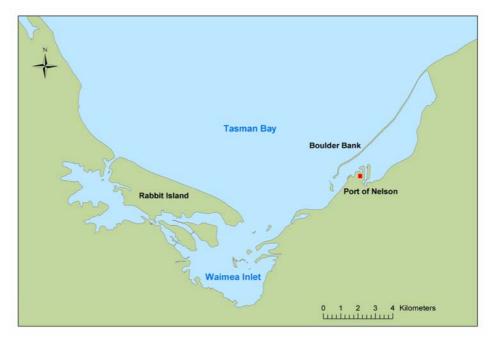


Figure 2: Tasman Bay and Port Nelson map

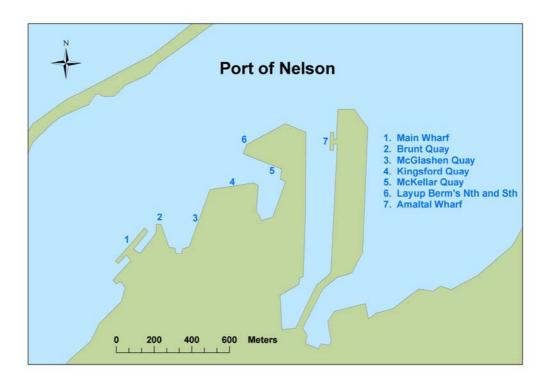


Figure 3: Port of Nelson map.

PORT OPERATION AND SHIPPING MOVEMENTS

Following early exploration by Kupe, the Nelson region was settled by a succession of different Māori tribal groups (e.g. Hāwea, Waitaha and Ngāti Māmoe). The 1820's brought an influx of sealers, whalers and associated traders to the region. The first party of European Nelson settlers, under Captain Arthur Wakefield, arrived in 1841 and Nelson Haven was found and chosen as the place for the settlement. At the time, a port of a kind, behind the long Boulder Bank, was found to be within ready communication with the small Waimea Plain, and there the next wave of new settlers landed in 1842. The port gradually developed to service the other nearby coastal settlements. By the 1880's orchard yields were sufficient to establish fruit-preserving and jam-making industries, and early in the following century an export trade in apples to Australia and the UK commenced. Haulashore Island was connected to the Boulder Bank until The Cut was made in 1906, which provided the new entrance to the port. From the early 1900's to 1922 the Union Steam Ship Company ran a passenger and service from Nelson to the West Coast and Picton. After centralisation of shipping was introduced in 1943, the port was used only by coastal vessels and tankers until 1951, when improvements made it possible for overseas ships to load and unload (Allan 1954). Goods handled in 1964 totalled 292,677 tons. At that time motor spirits were the main import, while fruit, frozen meat, and timber were the main exports (www.teara.govt.nz).

Port Nelson currently consists predominantly of linear berth face, and incorporates berthage operated by Port Nelson Ltd (www.portnelson.co.nz) and several independent fishing companies. These include two of New Zealand's largest operators, Amaltal and the Sealord Group. There are two heavy-duty wharves: the remodelled Main Wharf and Brunt Quay; and two multipurpose berths: McGlashen Quay and Kingsford Quay. There are also three designated lay-up berths for ship repair work and refitting. The main independently operated berth is McKellar Quay, with several other smaller wharves and facilities designated for use by fishing fleets. Port Nelson is Australasia's largest fishing port. Nelson interests hold over half of New Zealand's sustainable catching rights and, as such, this port is used heavily by various fishing vessels (www.portnelson.co.nz). Berth construction is a mixture of concrete and wood decking on Australian hardwood or concrete piles, with some solid concrete berths (Lay-up berths). Table 1 summarises berthage facilities at Port Nelson.

Port Nelson is a net export facility, a higher volume of cargo is loaded than unloaded (Taylor 1998). Forestry products, such as logs, sawn timber and Medium Density Fibreboard (MDF), account for much of the cargo. Seafood is also a major commodity, with aquaculture products contributing to growth in export volumes. Fruit is another large export product. In 2004, cargo volumes reached a record 2.5 million tonnes, driven by a strong performance from the fruit, forestry and fishing sectors. Container throughput was also a record 51,128 TEU in 2004, due to an increased containerisation of export apples and timber products (www.portnelson.co.nz).

As well as a high volume of national shipping traffic, Port Nelson handles vessels from a range of international destinations. Port Nelson has around 500 foreign ship visits per year and approximately 100 of these visits represent the first port of call for that vessel in New Zealand (Taylor 1998). Port Nelson Ltd provides a detailed breakdown for both vessel origin and destination in terms of number of containers and related tonnage (www.portnelson.co.nz). The port has MAF inspection and quarantine, and customs clearance facilities.

There is a recreational marina nearby eastwards of the port in Dixon Basin. During the 1980's the Nelson Harbour Board dredged the area between Vickerman Street reclamation and the Matai River to create Dixon Basin. The marina currently has 485 berths (420 pontoon berths, 33 pile berths and 32 swing moorings) for vessels up to 20 m in length (www.ncc.co.nz).

Additional berths are being constructed at present. The port also contains a superyacht berth where yachts larger than 20 m are able to moor.

Analyses of shipping arrivals to the Port show that most commercial vessels arrive from the northwest Pacific (56 %), northeast Pacific (7 %), Australia (7 %) and the Arabian Seas (7 %). Exports from New Zealand also head to these locations and others, such as North America, the Middle East and Papua New Guinea (Inglis 2001). More recent analyses of shipping arrivals to the Port of Nelson (Campbell 2004) show that there was a combined total of 100 international ship visits during 2002/2003 (54 merchant, 21 fishing and 25 pleasure vessels) with essentially the same source country proportions as noted by Inglis (2001). In 2000, there were 79 registered fishing vessels in Port Nelson (Sinner et al 2000). In 2004, the number of vessel visits was 1,267; down from 1,470 in the previous year, mainly due to changes in coastal services (e.g. change in Strait Shipping using the larger 'Kent' to call once-a-week rather than the previous three weekly visits using the smaller 'Suilven'). There were also three passenger ship visits in 2004 (www.portnelson.co.nz).

Vessels unable to be berthed immediately in the port may anchor off the Boulder Bank approximately 1 nautical mile north of The Cut. Pilotage is compulsory on vessels over 100 GRT unless they have pilot exemption. Vessels under 130 m in length can move at any stage of the tide (www.portnelson.co.nz).

Vessels are expected to comply with the Voluntary Controls on the Discharge of Ballast Water in New Zealand (<u>www.fish.govt.nz/sustainability/biosecurity</u>); vessels are requested to exchange ballast water in mid-ocean (away from coastal influences) en route to New Zealand and discharge only the exchanged water while in port. According to Inglis (2001), a total volume of 157,000 m³ of ballast water was discharged in Port Nelson in 1999, with the largest country-of-origin volumes of 43,099 m3 from Japan, 9,335 m³ from Taiwan, 3,243 m³ from Australia, and 100,238 m³ unspecified.

Within the port, there is on-going annual maintenance dredging at the approach and entrance channels and in the harbour to clear debris that mainly comes down the Maitai river, with approximately 50,000 m³ of spoil removed (<u>www.ncc.govt.nz</u>). The spoil is taken out into southern Tasman Bay where it is deposited in consented spoil grounds (<u>www.portnelson.co.nz</u>). These spoil grounds currently also receive the dredge spoil originating from the berth constructions at the Nelson marina.

In terms of future development, Port Nelson Ltd intends to proceed with the Main Wharf South development. Originally intended to extend the current wharf a further 130 m in length, this has now been increased to 200 m in length. This development will dramatically increase Port Nelson Ltd's container handling capabilities in view of the increasing container trade (<u>www.portnelson.co.nz</u>). There is also a current emphasis on increasing productivity and efficiency within Port Nelson.

PHYSICAL ENVIRONMENT OF NELSON HARBOUR

Nelson harbour is typical of most estuarine waters with relatively deep channels feeding gradually sloping intertidal banks. The strongest tidal currents are seen in areas such as the entrance channels and the channel parallel to Boulder Bank, where narrow channels constrict flow (ASR Marine Consulting and Research 2003). Near the Port, patterns of flow are such that currents flow parallel with the Port walls. The currents converge during the ebb and diverge during the flood at the northern end of the wharves. They always diverge where the estuary widens, opposite the Main Wharf. Temporary eddies occur at high tide in the main channel opposite the Port (ASR Marine Consulting and Research 2003). Tides range in the

harbour from 4.10 m at mean high water to 1.52m at mean low water, giving a tidal range of 2.72 m (Ministry of Works and Development 1986). The port is dredged to a minimum of 9.8 m depth. Sediment composition in the Port is a product of the tidal current regime and ranges from muds (high silt and clay contents) in the area closest to the Port to sand further afield (Hopkins and Barter 2001).

EXISTING BIOLOGICAL INFORMATION

Several ecological studies have been undertaken within the Port environment, mainly for Port Nelson Limited. We summarise these findings below.

Roberts (1992) assessed the impact of dredging and disposal of dredge waste on the sediments and the benthic fauna in Port Nelson. The impact of long term dumping and the toxicity of Port sediments were investigated by assessing differences between the biota of Tasman Bay and the Port. Little difference was found between the two. Port sediments contained similar numbers of taxa, but more individuals than Tasman Bay. Species composition was similar, but Port sediments contained higher numbers of small worms (polychaetes and nematodes), and fewer crustaceans than Tasman Bay samples. The non-indigenous tiny window shell (*Theora lubrica*) was also noted as common in the Port and species lists were produced. The sediments in the Port contained slightly higher levels of total organic carbon, and much higher levels of ammonia than other samples during toxicity tests, indicating they contained more biodegradable organic material. Levels of trace metals (copper, lead and zinc) were higher in dredge samples from the Port than from Tasman Bay samples, but were still well below the standard international sediment quality criteria (Puget Sounds screening levels) used to indicate levels of individual contaminants that could cause biological impacts.

Forrest and Roberts (1995) examined the effects of stormwater runoff from log and woodchip stockpiles in the Port area. Sample sites were located in the direct vicinity of outfalls at berths throughout the Port. The encrusting plants and animals inhabiting concrete, wood and steel surfaces around the outfalls in these areas were noted and ranked on several levels of abundance, ranging from abundant to absent. A total of 48 species was recorded, with the dominant phylum being the molluscs. The non-indigenous mollusc *Crassostrea gigas* (Pacific oyster) was the only mollusc to be classed as abundant over all surface types and at all locations sampled. It was also one of the most abundant organisms recorded overall.

Stevens (1997) assessed the effects of reclamation and dredging options at four berths within Port Nelson – Main Wharf, Slipway, Maitai and Sealord. Macrofaunal samples were collected from each berth by dredge, their abundance ranked and species lists subsequently produced for each berth. None of the sites were thought to have special ecological value. There was little diversity in the conspicuous flora and fauna observed within the area of Main Wharf, and the macrofauna was characteristic of sandy and muddy substrates. The slipway area was the most degraded site and had an impoverished fauna. The seabed in the vicinity of Maitai consisted of flat areas of shell and sand and other areas where mega ripples had formed. The rippled areas had little conspicuous flora and fauna present. Where the bottom profile was flatter, the macrofauna consisted of a biota commonly found in sand and shell sediments. The Sealord area was dominated by horse mussels (*Atrina zelandica*) and associated biota, but the overall density of species recognised as being ecologically important was low. Macrofaunal composition reflected the mixed sandy and muddy substrate present across the site. Currents in the area investigated were strong.

Barter (1999) assessed sediment from the Port Nelson slipway basin for trace metals and described the diversity, abundance and composition of the associated benthic macrofaunal community. All of the sediment samples collected consisted of very fine soft mud, with

varying degrees of trace metal enrichment ranging from low or undetectable at outer sites to higher in the highly enriched, black anoxic sediments close to the slipway. Most of the sediment samples collected contained sandblasting grains, tar balls and visible paint flecks. All of the macrofaunal communities sampled appeared to have been impacted by sediment quality when compared with the community structure from other less disturbed sites around the Port. This was highlighted by the presence of high numbers of nematode worms, indicating either organic enrichment or habitat disturbance, in all of the samples. Species lists were produced, and included the non-indigenous bivalve *Theora lubrica*, which was present in 90 % of all samples. Large (dead) non-indigenous Pacific oyster (*Crassostrea gigas*) shells were also noted at one site, and large increases in faunal type and numbers were thought to be associated with their presence.

Hopkins and Barter (2001) prepared a report assessing the variations to dredging disposal by Port Nelson Limited. Sampling stations were located within the port environment, along the existing shipping channel and in an area at the outer limit of dredging activity where an extension to dredging was proposed. The macrofauna in the area of the proposed extension to dredging comprised a total of 29 taxa. The dominant infaunal taxa were polychaetes, bivalves and small crustaceans. The epifauna was dominated by sea stars, nudibranchs and sea cucumbers. Species abundance varied among samples, particularly for amphipods. Sediment composition varied across the sampling stations, ranging from largely mud to mostly sand. This was attributed to strong tidal currents along the shipping channel and away from the port structures that cause scouring of muddier sediments. The ash free dry weight (AFDW) component of sediments suggested a very low level of organic enrichment, particularly in areas away from the Port.

Taylor and MacKenzie (2001) tested Port Nelson for the presence of the toxic blooming dinoflagellate *Gymnodinium catenatum*, and did not detect any resting cysts (sediment samples) or motile cells (phytoplankton samples).

The invasive kelp Undaria pinnatifida was identified in Port Nelson in 1997, and this port is deemed in the optimal temperature zone for this macroalga (Sinner et al 2000). Nelson City Council (2003) assessed the extent of the Asian kelp Undaria pinnatifida in Nelson harbour as part of the Nelson State of the Environment Report for coastal areas. The report details the distribution and density of Undaria in the harbour environment from 1999 to 2003, with maps detailing infestation locations. Comparatively heavy infestations of Undaria were found in the Nelson marina, on Haulashore Island and through the Cut during the 1999 survey. In addition, Undaria was found on the hull of a moored vessel. A cleanup of the area followed, but not all plants could be removed due to the high level of infestation. By 2000, the infestation had spread, and 35 vessels were infested. Again, a cleanup of the area was initiated. In spite of these efforts, Undaria had spread even further by 2001 - there were now dense beds of Undaria where intermittent plants had been in 2000. New areas of infestation were noted on harbour piles and shoals. Infested vessels had increased in number from 35 in 2000 to 45 in 2001 (Nelson City Council 2003). Regular removal of plants had some impact on the abundance and total biomass of Undaria, but it failed to prevent or limit vessel infestation. Results of annual monitoring since 2001 suggest that efforts to clear the Undaria from Nelson Harbour have been ineffective and the overall infestation has remained constant. Some areas have escaped infestation, but this is largely due to wave exposure, mobile sediments and these areas being regularly exposed at high tide. Considering the vigorous pattern of spread displayed by Undaria since its discovery in 1997, the vitality of native seaweeds appears surprisingly unaffected.

Survey methods

SURVEY METHOD DEVELOPMENT

The sampling methods used in this survey were based on the CSIRO: Centre for Research on Introduced Marine Pests (CRIMP) protocols developed for baseline port surveys in Australia (Hewitt and Martin 1996, 2001). CRIMP protocols have been adopted as a standard by the International Maritime Organisation's Global Ballast Water Management Programme (GloBallast). Variations of these protocols are being applied to port surveys in many other nations. A group of New Zealand marine scientists reviewed the CRIMP protocols and conducted a workshop in September 2001 to assess their feasibility for surveys in this country (Gust et al. 2001). A number of recommendations for modifications to the protocols ensued from the workshop and were implemented in surveys throughout New Zealand. The modifications were intended to ensure cost effective and efficient collection of baseline species data for New Zealand ports and marinas. The modifications made to the CRIMP protocols and reasons for the changes are summarised in Table 2. Further details are provided in Gust et al. (2001).

Baseline survey protocols are intended to sample a variety of habitats within ports, including epibenthic fouling communities on hard substrata, soft-sediment communities, mobile invertebrates and fishes, and dinoflagellates. Below, we describe the methods and sampling effort used for the Nelson survey. The survey was undertaken between January 22nd and 25th, 2002. Most sampling was concentrated on four main berths: Kingsford Quay, Main Wharf, McGlashen Quay, and the lay-up and repair wharf (Fig 3). Additional trapping and opportunistic sampling was conducted at four other locations. A summary of sampling effort within the Port is provided in Tables 3a,b.

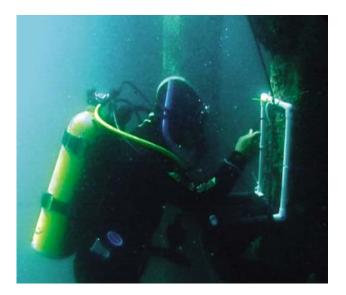
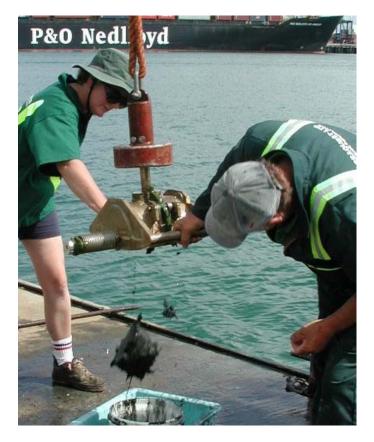
DIVER OBSERVATIONS AND COLLECTIONS ON WHARF PILES

Fouling assemblages were sampled on four pilings at each berth. Selected pilings were separated by 10 - 15 m and comprised two pilings on the outer face of the berth and, where possible, two inner pilings beneath the berth (Gust et al 2001). On each piling, four quadrats (40 cm x 25 cm) were fixed to the outer surface of the pile at water depths of approximately -0.5 m, -1.5 m, -3.0 m and -7 m. A diver descended slowly down the outer surface of each pile and filmed a vertical transect from approximately high water to the base of the pile, using a digital video camera in an underwater housing. On reaching the sea floor, the diver then ascended slowly and captured high-resolution still images of each quadrat using the photo capture mechanism on the video camera. Because of limited visibility, four overlapping still images, each covering approximately 1/4 of the area of the quadrat were taken for each quadrat. A second diver then removed fouling organisms from the piling by scraping the organisms inside each quadrat into a 1-mm mesh collection bag, attached to the base of the quadrat (Fig 4). Once scraping was completed, the sample bag was sealed and returned to the laboratory for processing. The second diver also made a visual search of each piling for potential invasive species and collected samples of large conspicuous organisms not represented in quadrats. Opportunistic visual searches were also made of breakwalls and rock facings within the commercial port area. Divers swam vertical profiles of the structures and collected specimens that could not be identified reliably in the field.

BENTHIC INFAUNA

Benthic infauna was sampled using a Shipek grab sampler deployed from a research vessel moored adjacent to the berth (Fig 5), with samples collected from within 10m of the edge of the berth. The Shipek grab removes a sediment sample of $\sim 3 l$ and covers an area of

approximately 0.04 m^2 on the seafloor to a depth of about 10 cm. It is designed to sample unconsolidated sediments ranging from fine muds and sands to hard-packed clays and small cobbles. Because of the strong torsion springs and single, rotating scoop action, the Shipek grab is generally more efficient at retaining samples intact than conventional VanVeen or Smith McIntyre grabs with double jaws (Fenwick *pers obs*). Three grab samples were taken at haphazard locations along each sampled berth. Sediment samples were washed through a 1mm mesh sieve and animals retained on the sieve were returned to the field laboratory for rough sorting and preservation.

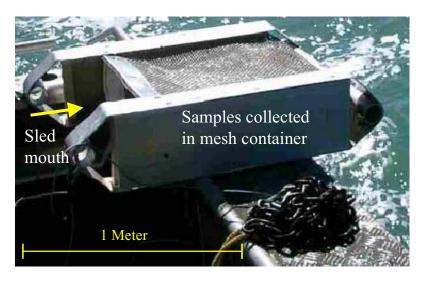

Figure 4: Diver sampling organisms on pier piles.

Figure 5: Shipek grab sampler: releasing benthic sample into bucket

EPIBENTHOS

Larger benthic organisms were sampled using an Ocklemann sled (hereafter referred to as a "sled"). The sled is approximately one meter long with an entrance width of ~0.7 m x 0.2 m. A short yoke of heavy chain connects the sled to a tow line (Fig 6). The mouth of the sled partially digs into the sediment and collects organisms in the surface layers to a depth of a few centimetres. Runners on each side of the sled prevent it from sinking completely into the sediment so that shallow burrowing organisms and small, epibenthic fauna pass into the exposed mouth. Sediment and other material that enters the sled is passed through a mesh basket that retains organisms larger than about two mm. Sleds were towed for a standard time of two minutes at approximately four knots. During this time, the sled typically traversed between 80 - 100 m of seafloor before being retrieved. Two to three sled tows were completed adjacent to each sampled berth within the port, and the entire contents were sorted.

SEDIMENT SAMPLING FOR CYST-FORMING SPECIES

A TFO gravity corer (hereafter referred to as a "javelin corer") was used to take small sediment cores for dinoflagellate cysts (Fig 7). The corer consists of a 1.0 m long x 1.5 cm diameter hollow stainless steel shaft with a detachable 0.5 m long head (total length = 1.5 m). Directional fins on the shaft ensure that the javelin travels vertically through the water so that the point of the sampler makes first contact with the seafloor. The detachable tip of the javelin is weighted and tapered to ensure rapid penetration of unconsolidated sediments to a depth of 20 to 30 cm. A thin (1.2 cm diameter) sediment core is retained in a perspex tube within the hollow spearhead. In muddy sediments, the corer preserves the vertical structure of the sediments and fine flocculant material on the sediment surface more effectively than handheld coring devices (Matsuoka and Fukuyo 2000). The javelin corer is deployed and retrieved from a small research vessel. Cyst sample sites were not constrained to the berths sampled by pile scraping and trapping techniques. Sampling focused on high sedimentation areas within the Port and avoided areas subject to strong tidal flow. On retrieval, the perspex tube was removed from the spearhead and the top 5 cm of sediment retained for analysis. Sediment samples were kept on ice and refrigerated prior to culturing. Culture procedures generally followed those described by Hewitt and Martin (2001).

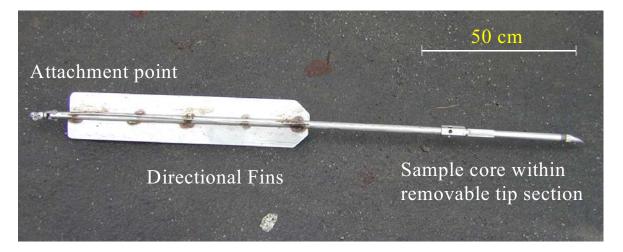


Figure 7: Javelin corer

MOBILE EPIBENTHOS

Benthic scavengers and fishes were sampled using a variety of baited trap designs described below.

Opera house fish traps

Opera house fish traps (1.2 m long x 0.8 m wide x 0.6 m high) were used to sample fishes and other bentho-pelagic scavengers (Fig 8). These traps were covered in $1-\text{cm}^2$ mesh netting and had entrances on each end consisting of 0.25 m long tunnels that tapered in diameter from 40 to 14 cm. The trap was baited with two dead pilchards (*Sardinops neopilchardus*) held in plastic mesh suspended in the centre of the trap. Two trap lines, each containing two opera house traps were set for a period of 1 hour at each site before retrieval. Previous studies have shown opera house traps to be more effective than other types of fish trap and that consistent catches are achieved with soak times of 20 to 50 minutes (Ferrell et al 1994; Thrush et al 2002).

Box traps

Fukui-designed box traps (63 cm x 42 cm x 20 cm) with a 1.3 cm mesh netting were used to sample mobile crabs and other small epibenthic scavengers (Fig 8). A central mesh bait holder containing two dead pilchards was secured inside the trap. Organisms attracted to the bait enter the traps through slits in inward sloping panels at each end. Two trap lines, each containing two box traps, were set on the sea floor at each site and left to soak overnight before retrieval.

Starfish traps

Starfish traps designed by Whayman-Holdsworth were used to catch asteroids and other large benthic scavengers (Fig 8). These are circular hoop traps with a basal diameter of 100 cm and an opening on the top of 60 cm diameter. The sides and bottom of the trap are covered with 26-mm mesh and a plastic, screw-top bait holder is secured in the centre of the trap entrance (Andrews et al 1996). Each trap was baited with two dead pilchards. Two trap lines, each with two starfish traps were set on the sea floor at each site and left to soak overnight before retrieval.

Shrimp traps

Shrimp traps were used to sample small, mobile crustaceans. They consisted of a 15 cm plastic cylinder with a 5-cm diameter screw top lid in which a funnel had been fitted. The

funnel had a 20-cm entrance that tapered in diameter to 1 cm. The entrance was covered with 1-cm plastic mesh to prevent larger animals from entering and becoming trapped in the funnel entrance. Each trap was baited with a single dead pilchard. Two trap lines, each containing two scavenger traps, were set on the sea floor at each site and left to soak overnight before retrieval.

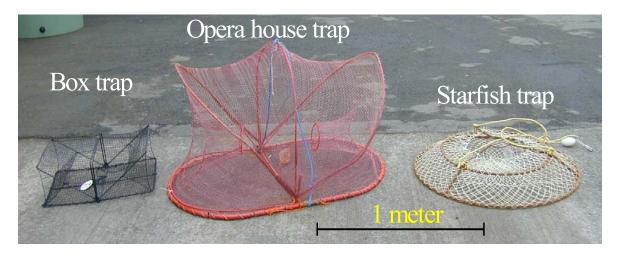


Figure 8: Trap types deployed in the port.

SAMPLING EFFORT

A summary of sampling effort within the Port of Nelson is provided in Tables 3 a,b. We particularly focused sampling effort on hard substrata within ports (such as pier piles and wharves) where invasive species are likely to be found (Hewitt and Martin 2001), and increased the number of quadrats sampled on each pile relative to the CRIMP protocols, as well as sampling both shaded and unshaded piles. The distribution of effort within ports aimed to maximise spatial coverage and represent the diversity of active berthing sites within the area. Total sampling effort was constrained by the costs of processing and identifying specimens obtained during the survey.

The spatial distribution of sampling effort for each of the sample methods in the Port of Nelson is indicated in the following figures: diver pile scrapings (Fig 9), benthic sledding (Fig 10), box, starfish and shrimp trapping (Fig 11), opera house fish trapping (Fig 12), shipek grab sampling and javelin cyst coring (Fig 13). Sampling effort was varied between ports and marinas on the basis of risk assessments (Inglis 2001) to maximise the search efficiency for NIS nationwide. A comparison of total sampling effort in each of the thirteen ports and three marinas surveyed in the national baseline survey programme is provided in Table 3c.

The benthic grab sampler was damaged during the field survey of Nelson and, as a result, only one site could be sampled using this technique (Fig. 13).

SORTING AND IDENTIFYING SPECIMENS

Each sample collected in the diver pile scrapings, benthic sleds, box, starfish and shrimp traps, opera house fish traps, shipek grabs and javelin cores was allocated a unique identifying code on waterproof labels and transported to a nearby field laboratory where it was sorted by a team into broad taxonomic groups (e.g. ascidians, barnacles, sponges etc.). These groups were then preserved and individually labelled. Details of the preservation techniques varied for many of the major taxonomic groups collected, and the protocols adopted and preservative solutions used are indicated in Table 4. Specimens were subsequently sent to over 25

taxonomic experts (Appendix 1) for identification to species or lowest taxonomic unit (LTU). We also sought information from each taxonomist on the known biogeography of each species within New Zealand and overseas. Species lists compiled for each port were compared with the marine species listed on the New Zealand register of unwanted organisms under the Biosecurity Act 1993 (Table 5a) and the marine pest list produced by the Australian Ballast Water Management Advisory Council (Table 5b).

Figure 9: Diver pile scraping sites

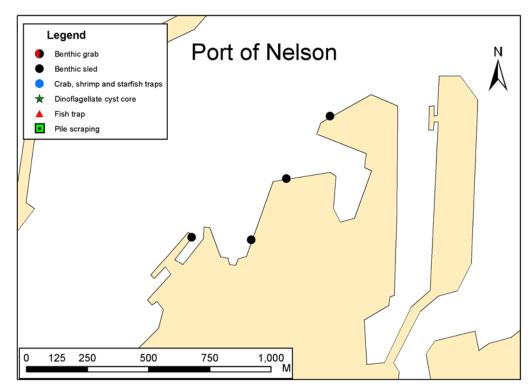


Figure 10: Benthic sledding sites.

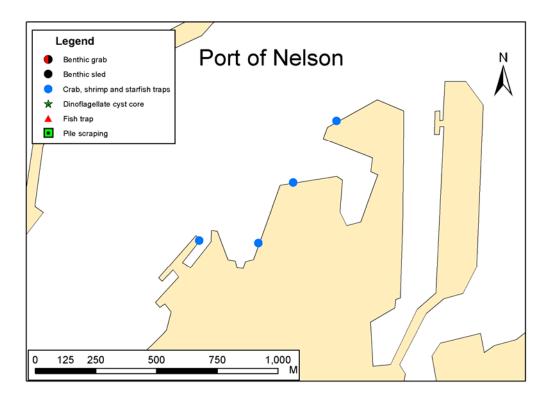


Figure 11: Box, starfish and shrimp trapping sites.

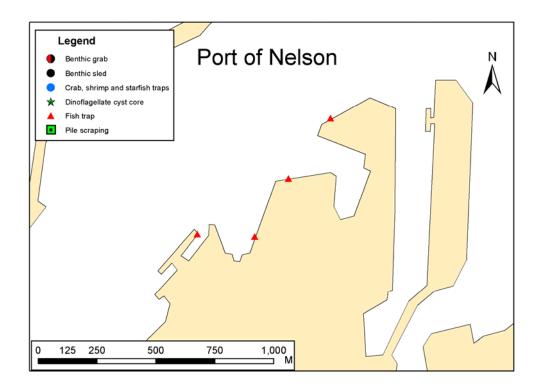


Figure 12: Opera house trapping sites.

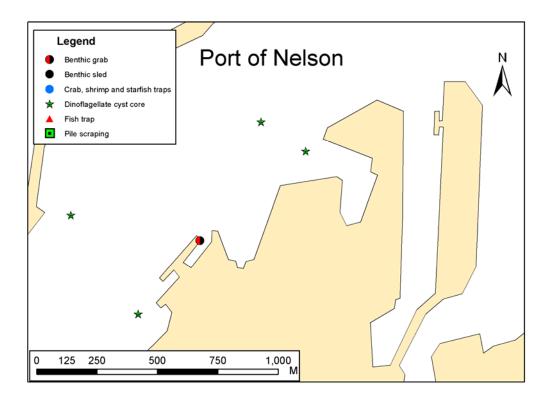


Figure 13: Javelin core and shipek grab sites.

DEFINITIONS OF SPECIES CATEGORIES

Each species recovered during the survey was classified into one of four categories that reflected its known or suspected geographic origin. To do this we used the experience of taxonomic experts and reviewed published literature and unpublished reports to collate information on the species' biogeography.

Patterns of species distribution and diversity in the oceans are complex and still poorly understood (Warwick 1996). Worldwide, many species still remain undescribed or undiscovered and their biogeography is incomplete. These gaps in global marine taxonomy and biogeography make it difficult to reliably determine the true range and origin of many species. The four categories we used reflect this uncertainty. Species that were not demonstrably native or non-indigenous were classified as "cryptogenic" (sensu Carlton 1996). Cryptogenesis can arise because the species was spread globally by humans before scientific descriptions of marine flora and fauna began in earnest (i.e. historical introductions), or because the species has been discovered relatively recently and there is insufficient biogeographic information to determine its native range. We have used two categories of cryptogenesis to distinguish these different sources of uncertainty. In addition, a fifth category ("species indeterminata") was used for specimens that could not be identified to species-level. Formal definitions for each category are given below.

Native species

Native species are known to be endemic to the New Zealand biogeographical region and have not been introduced to coastal waters by human mediated transport.

Non-indigenous species (NIS)

Non-indigenous species (NIS) are known or suspected to have been introduced to New Zealand as a result of human activities. They were determined using a series of questions

posed by Chapman and Carlton (1991, 1994) as a guide; as exemplified by Cranfield *et al.* (1998).

- 1. Has the species suddenly appeared locally where it has not been found before?
- 2. Has the species spread subsequently?
- 3. Is the species' distribution associated with human mechanisms of dispersal?
- 4. Is the species associated with, or dependent on, other non-indigenous species?
- 5. Is the species prevalent in, or restricted to, new or artificial environments?
- 6. Is the species' distribution restricted compared to natives?

The worldwide distribution of the species was tested by a further three criteria:

- 7. Does the species have a disjunctive worldwide distribution?
- 8. Are dispersal mechanisms of the species inadequate to reach New Zealand, and is passive dispersal in ocean currents unlikely to bridge ocean gaps to reach New Zealand?
- 9. Is the species isolated from the genetically and morphologically most similar species elsewhere in the world?

In this report we distinguish two categories of NIS. "NIS" refers to non-indigenous species previously recorded from New Zealand waters, and "NIS (new)" refers to non-indigenous species first discovered in New Zealand waters during this project.

Cryptogenic species Category 1

Species previously recorded from New Zealand whose identity as either native or nonindigenous is ambiguous. In many cases this status may have resulted from their spread around the world in the era of sailing vessels prior to scientific survey (Chapman and Carlton 1991, Carlton 1992), such that it is no longer possible to determine their original native distribution. Also included in this category are newly described species that exhibited invasive behaviour in New Zealand (Criteria 1 and 2 above), but for which there are no known records outside the New Zealand region.

Cryptogenic species Category 2:

Species that have recently been discovered but for which there is insufficient systematic or biogeographic information to determine whether New Zealand lies within their native range. This category includes previously undescribed species that are new to New Zealand and/or science.

Species indeterminata

Specimens that could not be reliably identified to species level. This group includes: (1) organisms that were damaged or juvenile and which lacked morphological characteristics necessary for identification, and (2) taxa for which there is not sufficient taxonomic or systematic information available to allow identification to species level.

Survey results

A total of 196 species or higher taxa were identified from the Nelson Port survey. This collection consisted of 133 native (Table 6), 15 cryptogenic (Table 7), 14 non-indigenous species (Table 8) and 34 species indeterminata (Table 9, Fig 14). The biota included a diverse array of organisms from 12 Phyla (Fig 15). Six species from the Port of Nelson had not previously been described from New Zealand waters. For general descriptions of the main groups of organisms (Phyla) encountered during this study refer to Appendix 2.

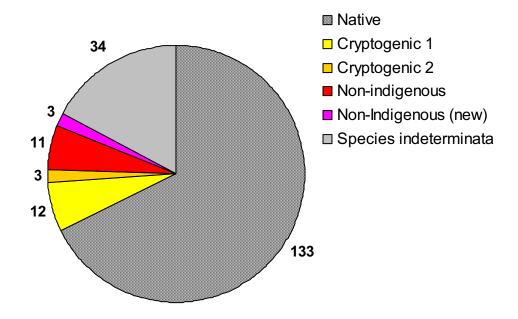


Figure 14: Diversity of marine species sampled in the Port of Nelson. Values indicate the number of species in native, cryptogenic, non-indigenous and species indeterminata categories.

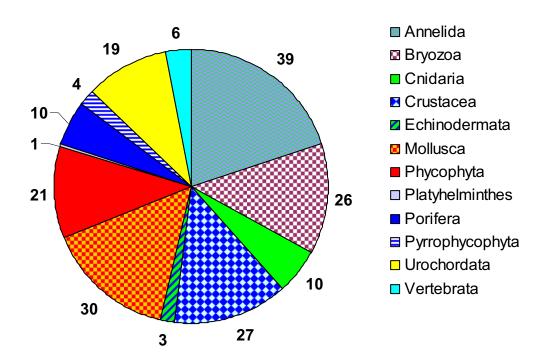


Figure 15: Marine Phyla sampled in the Port of Nelson. Values indicate the number of species in each of the major taxonomic groups.

NATIVE SPECIES

A total of 133 native species was identified from the Port of Nelson. Native species (Table 6) represent 67.9 % of all species identified from this location and included diverse assemblages of annelids (30 species), bryozoans (16 species), crustaceans (23 species) and molluscs (26 species). A number of other less diverse phyla were also sampled from the Port including cnidarians, echinoderms, phycophyta, porifera, pyrrophycophyta, urochordata and vertebrates (Table 6).

CRYPTOGENIC SPECIES

Fifteen cryptogenic species were discovered in the Port of Nelson. Cryptogenic species represent 7.6 % of all species or higher taxa identified from the Port. The cryptogenic organisms identified included 12 Category one and three Category two species as defined in Section 2.8 above. These organisms included one bryozoan, two cnidarians, one crustacean, one mollusc, four sponges and six ascidian species (Table 7). Many of the Category one cryptogenic species have been present in New Zealand for more than 100 years but have distributions outside New Zealand that suggest non-native origins (Cranfield et al. 1998). For example, the ascidians *Aplydium phortax*, *Astereocarpa cerea*, *Botrylloides leachi*, and *Corella eumyota*, which were present in Nelson, were first recorded in New Zealand before 1900. These ascidians, and *Styela plicata* (first reported in 1948) have cosmopolitan distributions, with early descriptions (i.e. pre-1900) also originating from Australia, and the north-eastern and north-western Atlantic.

Also recorded from Port Nelson was the colonial ascidian *Didemnum vexillum* (Kott, 2002). This species was first described from Whangamata, New Zealand, in 2001 when it formed nuisance growths on ship's hulls, wharf piles and other submerged structures (Kott 2002). It has subsequently been reported from several other port environments in the Bay of Plenty and upper South Island (Port Nelson and Shakespeare Bay, Picton) and a local control programme was trialled in the Marlborough Sounds to prevent its spread to aquaculture sites (Coutts 2002). The appearance of *D. vexillum* in New Zealand was followed closely by reports of other nuisance species in this genus from the Atlantic coast of the USA, Mediterranean, North Sea and English Channel, but these now appear to be different species (Kott 2004).

Three of the sponges (*Halichondria n. sp. 5, Haliclona n. sp. 1* and *Haliclona n. sp. 7*) listed in the C2 category in this Port, have not been previously described in New Zealand waters. *Haliclona* n. sp. 1 was the only one of these three species to be recorded from another port during the national baseline surveys. It was also recorded for the first time from Picton and Wellington.

NON-INDIGENOUS SPECIES

Fourteen non-indigenous species (NIS) were recorded from the Port of Nelson (Table 8). NIS included one annelid, eight bryozoans, one cnidarian, two molluscs and two urochordates. NIS represents 7.1 % of all identified species from this location. Three of these species; the bryozoan *Celleporaria nodulosa,* the cnidarian *Lafoeina amirantensis* and the urochordate *Cnemidocarpa sp.*, were not previously known from New Zealand waters. A list of Chapman and Carlton's (1994) criteria (see Section 2.9.2) that were met by the non-indigenous species sampled in this survey is listed in Appendix 3. Below we summarise available information on the biology of each of these species, providing images where available, and indicate what is known about their distribution, habitat preferences and impacts. This information was sourced from published literature, the taxonomists listed in Appendix 1 and from regional databases on non-indigenous marine species in Australia (National Introduced Marine Pest Information System; http://www.crimp.marine.csiro.au/nimpis) and the USA (National Exotic Marine and Estuarine

Species Information System; <u>http://invasions.si.edu/nemesis</u>). NIS are presented below by phyla in the same order as Table 8.

Polydora hoplura (Clapar ède, 1870)

Polydora hoplura is a spionid polychaete worm that bores into the shells of molluscs. It is a common pest of shellfish mariculture as its burrows cause blisters in the shells of farmed oysters, mussels and abalone (Pregenzer 1983, Handley 1995, Lleonart et al. 2003). The type specimen for this species was recorded from the Gulf of Naples, Italy (Claparède, E. 1870). Its native range is thought to be the Atlantic coast of Europe and the Mediterranean (Cranfield et al. 1998). *P. hoplura* has also been recorded from South Africa, South Eastern Australia (Bass Strait and Victoria, Central East Coast, Southern Gulf Coast, and Tasmania; Australian Faunal Directory 2005) and New Zealand where it is thought to have been introduced. It is not known when *P. hoplura* first arrived in New Zealand. In Europe and New Zealand, *P. hoplura* is often associated with shells of the introduced Pacific oyster *Crassostrea gigas* (Handley 1995).

Polydora hoplura had previously been recorded from Wellington and the Marlborough Sounds (Cranfield et al. 1998) and was recorded from Whangarei, Tauranga, Wellington, Picton, and Dunedin during the baseline port surveys (Table 10). In Port Nelson this species occurred in pile scrape samples taken at McGlashen Quay (Fig 16).

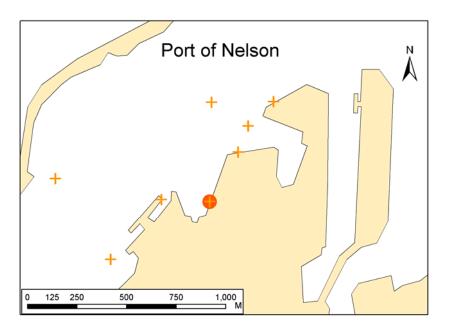


Figure 16: *Polydora hoplura* presence (circle) and absence (cross) In the Port of Nelson

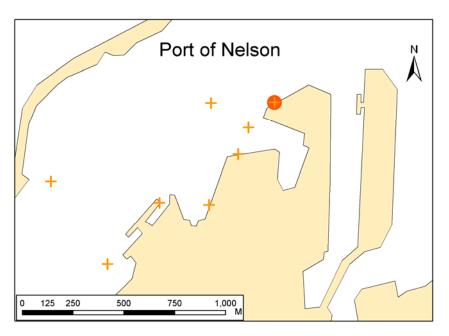

Bugula flabellata (Thompson in Gray, 1847)

Image and information: NIMPIS (2002a)

Biosecurity New Zealand

Bugula flabellata is an erect bryozoan with broad, flat branches. It is a colonial organism and consists of numerous 'zooids' connected to one another. It is pale pink and can grow to about 4 cm high and attaches to hard surfaces such as rocks, pilings and pontoons or the shells of other marine organisms. It is often found growing with other erect bryozoan species such as B. neritina or growing on encrusting bryozoans. Vertical, shaded, sub-littoral rock surfaces also form substrata for this species. It has been recorded down to 35 m. Bugula flabellata is native to the British Isles and North Sea and has been introduced to Chile, Florida and the Caribbean and the northern east and west coasts of the USA, as well as Australia and New Zealand. It is cryptogenic on the Atlantic coasts of Spain, Portugal and France. Bugula *flabellata* has been present in New Zealand since at least 1949 and is present in most New Zealand ports. It is a dominant component of fouling assemblages in ports and harbours, particularly on vessel hulls, pilings and pontoons, and has also been reported from offshore oil platforms. There have been no recorded impacts from B. flabellata. During the current baseline surveys it was recorded from Opua marina, Whangarei, Auckland, Tauranga, Napier, Taranaki, Wellington, Picton, Nelson, Lyttelton, Timaru, Dunedin and Bluff. In Port Nelson this species occurred in pile scrapings taken from the Lay-up Berth (Fig 17).

Figure 17: *Bugula flabellata* presence (circle) and absence (cross) in the Port of Nelson

Cryptosula pallasiana (von Moll, 1803)

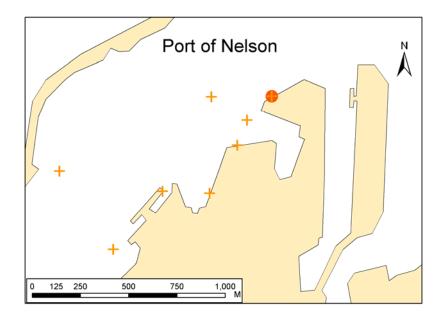


Image and information: NIMPIS (2002d)

Cryptosula pallasiana is an encrusting bryozoan, white-pink in colour with orange crusts. The colonies sometimes rise into frills towards the edges. Zooids are hexagonal in shape,

measuring on average 0.8 mm in length and 0.4 mm in width. The frontal surface of the zooid is heavily calcified, and has large pores set into it. Colonies may sometimes appear to have a beaded surface due to zooids having a suboral umbo (ridge). The aperture is bell shaped, and occasionally sub-oral avicularia (defensive structures) are present. There are no ovicells (reproductive structures) or spines present on the colony. *Cryptosula pallasiana* is native to Florida, the east coast of Mexico and the northeast Atlantic. It has been introduced to the northwest coast of the USA, the Japanese Sea, Australia and New Zealand. It is cryptogenic in the Mediterranean. *Cryptosula pallasiana* is a common fouling organism on a wide variety of substrata. Typical habitats include seagrasses, drift algae, oyster reef, artificial structures such as piers and breakwaters, man-made debris, rock, shells, ascidians, glass and vessel hulls. It has been reported from depths of up to 35 m. There have been no recorded impacts of *Cryptosula pallasiana* throughout its introduced range. However, in the USA, it has been noted as one of the most competitive fouling organisms in ports and harbours it occurs in. Within Australia, colonies generally do not reach a large size or cover large areas of substrata.

C. pallasiana has been recorded from all New Zealand ports (Cranfield et al. 1998). In Port Nelson this species occurred in pile-scrapes from the Lay-up Berth (Fig 18).

Figure 18:Cryptosula pallasiana presence (circle) and absence (cross) in the Port of
Nelson

Conopeum seurati (Canu, 1908)

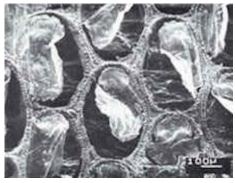
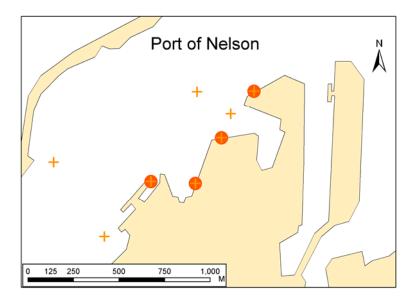



Image and information: Cranfield et al 1998; Gordon and Matawari 1992; Smithsonian Institution (available at http://www.sms.si.edu/irlspec/Conope seurat.htm)

Conopeum seurati is an encrusting bryozoan that forms small whitish colonies on seagrasses and other substrata. The zooids are oval in shape and measure approximately 0.55×0.33

mm. Each zooid has a single pair of long, distal spines and the lateral spines, if present, are highly variable in number. The lophophore measures approximately 0.621 mm in diameter and bears an average of 15 tentacles. *Conopeum seurati*'s native range includes the Caspian, Azov and Mediterranean Seas. The species has been introduced to New Zealand and Florida's east coast. It has been present in New Zealand since at least 1963. *C. seurati* is a fouling organism that can be found on hard surfaces, marine animals, and plants in estuarine environments. Its impacts on native organisms are unknown.

In New Zealand, *C. seurati* has been recorded from Opua, Whangarei, Auckland, Manukau, Gisborne, Napier, Nelson and Lyttelton. In Port Nelson this species was sampled from pile scrapings at the K-, Lay-up, Main-, and McGlashen Quay berths (Fig 19).

Figure 19: *Conopeum seurati* presence (circle) and absence (cross) in the Port of Nelson

Electra angulata (Levinsen, 1909)

Electra angulata is an encrusting bryozoan that forms small whitish colonies on a variety of substrata. *Electra angulata* is known from the Indo-Pacific, from Thailand and Japan. Its impacts on native organisms are unknown. In Port Nelson this species was sampled from benthic grab and pile scrape samples taken near the Main Berth (Fig 20).

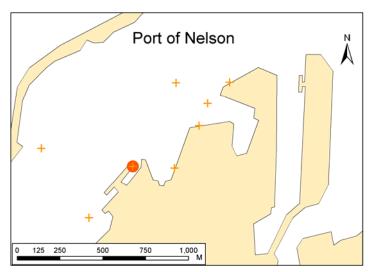
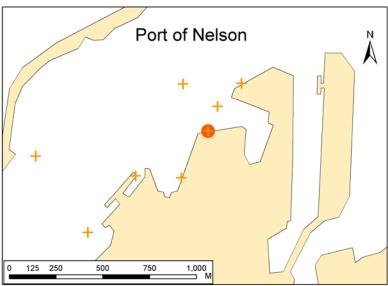



Figure 20. Electra angulata presence (circle) and absence (cross) in the Port of Nelson

Celleporaria nodulosa (Busk, 1881)

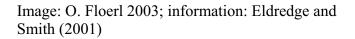
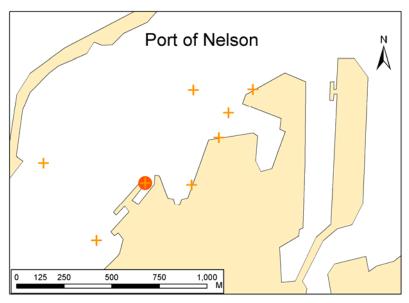

Celleporaria nodulosa is an encrusting bryozoan in the family Lepraliellidae. There are more than 100 species in the genus *Celleporaria* world-wide. The type specimen for *C. nodulosa* was first described from the southeastern coast of Australia, where it is widespread. It forms low, flat, spreading colonies that have a blue-green tinge. This is the first record of this species in New Zealand (D. Gordon, pers. comm.). During the port baseline surveys, it was also recorded from the port of Gisborne. No information exists on its likely impacts on native species. In Port Nelson, *C. nodulosa* was recorded in pile scrapings taken from K-Berth (Fig 21).

Figure 21: *Celleporaria nodulosa* presence (circle) and absence (cross) in the Port of Nelson

Schizoporella errata (Waters, 1878)



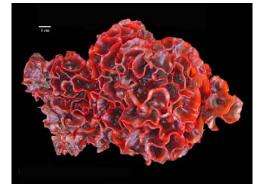
Schizoporella errata is a heavily calcified, encrusting bryozoan that is typically dark brick red with orange-red growing margins. It assumes the shape of whatever it overgrows. This species may form heavy knobbly incrustations on flexible surfaces such as algae or worm tubes, turning them into solid, sometimes erect branching structures. The thickness of the growth is dependent upon the age of the colony. Multilaminar encrustations 1 cm thick are common. The frontal surface of the zoecium (secreted exoskeleton housing of individual zooids) is porous with a wide semicircular aperture and proximal sinus. It also has single avicularia on the right or left side of the aperture sinus.

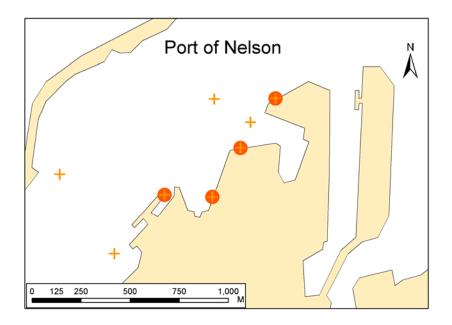
Schizoporella errata is thought to be native to the Mediterranean. It has been introduced to many worldwide locations in warm temperate-subtropical seas. It has been reported from West Africa, the Red Sea, the Persian Gulf, South Australia, New Zealand, the Hawaiian

Islands, the Pacific coast of North America, the east coast of North America through to the Caribbean and Brazil. *S. errata* occurs in shallow water on various hard substrates (pilings, hulls, coral rubble, etc.) in harbours and embayments. It is also occasionally found on rocky or coral reefs. *S. errata* can compete with other fouling organisms for space and large encrustations of this species are known to smother other biota (Cocito et al. 2000). It is present in Waitemata Harbour and the Bay of Islands and was also recorded from Gulf Harbour Marina and Whangarei Harbour during the baseline port surveys (Table 10). In Port Nelson it occurred in benthic grab samples taken from the Main Berth (Fig 22).

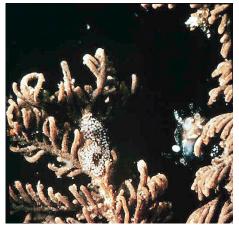
Figure 22: Schizoporella errata presence (circle) and absence (cross) in the Port of Nelson

Watersipora subtorquata (d'Orbigny, 1842)




Image: California Academy of Sciences. Information: Gordon and Matawari (1992)

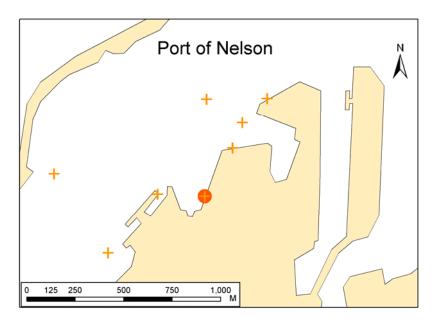
Watersipora subtorquata is a loosely encrusting bryozoan capable of forming single or multiple layer colonies. The colonies are usually dark red-brown, with a black centre and a thin, bright red margin. The operculum is dark, with a darker mushroom shaped area centrally. *Watersipora subtorquata* has no spines, avicularia or ovicells. The native range of the species is unknown, but is thought to include the wider Caribbean and South Atlantic. The type specimen was described from Rio de Janeiro, Brazil (Gordon and Matawari 1992). It also occurs in the north-western Pacific, Torres Strait and north-eastern and southern Australia.


W. subtorquata is an important marine fouling species in ports and harbours. It occurs on vessel hulls, pilings and pontoons. This species can also be found attached to rocks and seaweeds. They form substantial colonies on these surfaces, typically around the low water mark. *Watersipora subtorquata* is also an abundant fouling organism and is resistant to a

range of antifouling toxins. It can therefore spread rapidly on vessel hulls and provide an area for other species to settle onto which can adversely impact on vessel maintenance and speed, as fouling assemblages can build up on the hull.

W. subtorquata has been present in New Zealand since at least 1982 and is now present in most ports from Opua to Bluff (Gordon and Matawari 1992). In Port Nelson this species was recovered from pile scrapings at the K-, Lay-up, Main and McGlashen Berths (Fig 23).

Figure 23: *Watersipora subtorquata* presence (circle) and absence (cross) in the Port of Nelson



Anguinella palmata (van Beneden, 1845)

Image and information: Gordon and Matawari (1992)

Anguinella palmata is a bryozoan that forms erect and uncalcified tufts that are pale beige in colour. The tufts comprise a main axis with numerous branches of tubular zooids slightly incurved toward the axis. The New Zealand specimens reach up to 6 cm in length, but specimens of 20 cm have been reported from other countries. This species occurs in both intertidal and subtidal habitats. The native range of Anguinella palmata is unknown, but is thought to be southern Europe. Its current distribution includes Britain, the North Sea, Senegal, Ghana, Zaire, the Atlantic coast of North America, Brazil and Australia. A. palmata has been present in New Zealand since at least 1960 and has been recorded from Waitemata Harbour and Nelson (Gordon and Matawari 1992). In Port Nelson this species was found in

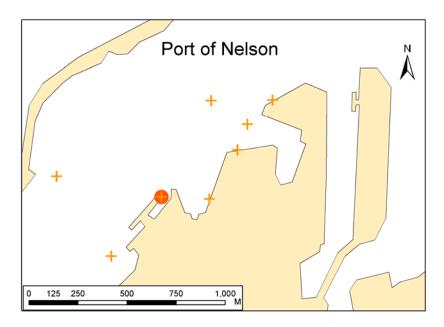

pile scrapings taken from McGlashen Quay (Fig24). There are no known impacts of A. palmata.

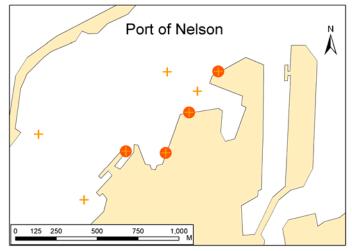
Figure 24: Anguinella palmata presence (circle) and absence (cross) in the Port of Nelson

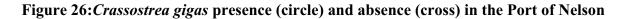
Lafoeina amirantensis (Millard & Bouillon, 1973)

Lafoeina amirantensis is a small epizootic hydroid in the family Campanulariidae. It is known from South Australia, Tasmania, the Seychelles (Indian Ocean), Panama, and Brazil (Smithsonian Tropical Research Institute 2004, Migotto and Cabral 2005). Details of its native range and ecological impacts are unknown. The specimens found in the port of Nelson are the first records of this species from New Zealand. In Port Nelson *L. amirantensis* was recovered from a benthic sled tow near the Main Berth (Fig 25).

Figure 25: *Lafoeina amirantensis* presence (circle) and absence (cross) in the Port of Nelson

Crassostrea gigas (Thunberg, 1793)




Image and information: NIMPIS (2002c)

The Pacific oyster, *Crassostrea gigas*, is an important aquaculture species throughout the world, including New Zealand. It has a white elongated shell, with an average size of 150-200 mm. The two valves are solid, but unequal in size and shape. The left valve is slightly convex and the right valve is quite deep and cup shaped. One valve is usually entirely cemented to the substratum. The shells are sculpted with large, irregular, rounded, radial folds.

Crassostrea gigas is native to the Japanese and China Seas and the northwest Pacific. It has been introduced to the west coast of both North and South America, the West African coast, the northeast Atlantic, the Mediterranean, Australia, New Zealand, Polynesia and Micronesia. It is cryptogenic in Alaska. *Crassostrea gigas* will attach to almost any hard surface in sheltered waters. Whilst they usually attach to rocks, the oysters can also be found in muddy or sandy areas. Oysters will also settle on adult oysters of the same or other species. They prefer sheltered waters in estuaries where they are found in the intertidal and shallow subtidal zones, to a depth of about 3 m. *Crassostrea gigas* settles in dense aggregations in the intertidal zone, resulting in the limitation of food and space available for other intertidal species.

C. gigas has been present in New Zealand since the early 1960s. Little is known about the impacts of this species in New Zealand, but it is now a dominant structural component of fouling assemblages and intertidal shorelines in northern harbours of New Zealand and the upper South Island. *C. gigas* is now the basis of New Zealand's oyster aquaculture industry, having displaced the native rock oyster, *Saccostrea glomerata*. *C. gigas* was recorded from Opua marina, Whangarei Harbour, Gulf Harbour marina, Auckland, Taranaki, Nelson and Dunedin during the port baseline surveys (Table 10). In Port Nelson this species was sampled from benthic grab samples and pile scrapings taken from the K-, Lay-up, Main and McGlashen Quay Berths (Fig 26).

Theora lubrica (Gould, 1861)

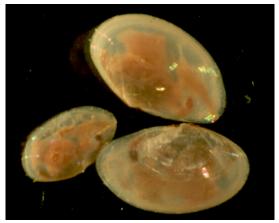


Image and information: NIMPIS (2002e)

Theora lubrica is a small bivalve with an almost transparent shell. The shell is very thin, elongated and has fine concentric ridges. *T. lubrica* grows to about 15 mm in size, and is characterised by a fine elongate rib extending obliquely across the internal surface of the shell. *Theora lubrica* is native to the Japanese and China Seas. It has been introduced to the west coast of the USA, Australia and New Zealand. *Theora lubrica* typically lives in muddy sediments from the low tide mark to 50 m, however it has been found at 100 m. In many localities, *T. lubrica* is an indicator species for eutrophic and anoxic areas. *T. lubrica* has been present in New Zealand since at least 1971. It occurs in estuaries of the north-east coast of the North Island, including the Bay of Islands, Whangarei Harbour, Waitemata Harbour, Wellington and Pelorus Sound. During the port baseline surveys, it was recovered from Opua, Whangarei port and marina, Gulf Harbour marina, Auckland, Gisborne, Napier, Taranaki, Wellington, Nelson, and Lyttelton. In Port Nelson, *T. lubrica* was occurred in benthic sled samples taken from near the K- and McGlashen Berths (Fig 27).

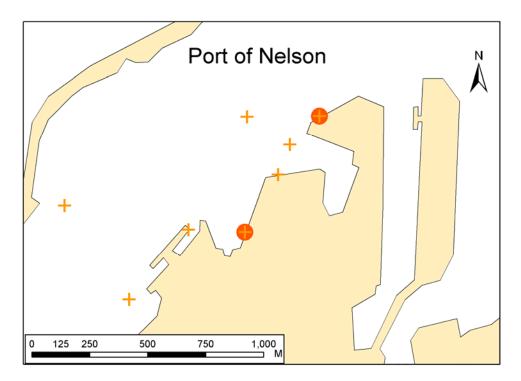


Figure 27: *Theora lubrica* presence (circle) and absence (cross) in the Port of Nelson.

Ciona intestinalis (Linnaeus, 1767)

Image and information: NIMPIS (2002b)

Ciona intestinalis is a solitary ascidian, commonly found in dense aggregations on rocks, algal holdfasts, seagrass, shells and artificial structures such as pylons, buoys and ships hulls. It usually hangs vertically upside-down in the water column, attached to hard surfaces. It is cylindrical, and 100-150 mm in length with distinctive inhalant and exhalant apertures (siphons) having yellow margins and orange/red spots. The body wall is generally soft and translucent with the internal organs visible. They can also be hard and leathery due to heavy fouling. Short projections (villi) at its base anchor the animal to the substratum.

The type specimen of C. intestinalis was described from Europe by Linnaeus 1767. It is thought to have been introduced to Chile and Peru, the northern west coast of the USA, equatorial West Africa and South Africa, Australia and New Zealand. Ciona intestinalis is considered cryptogenic to Alaska, the east coast of the USA and Canada, Greenland, Iceland, Japan, China and south east Asia. It is often found in enclosed and semi-protected marine embayments and estuaries and although it occurs in the low intertidal and shallow subtidal zones, C. intestinalis clearly decreases in abundance with depth. Australian populations appear to be in decline, disappearing from port areas where the species had previously dominated in the 1950s-1960s and the same phenomenon has been observed in New England, USA. Its high filtration rates and large numbers can reduce water turbidity and food availability in shallow waters and it can out-compete native species for food and space. Since it appeared in southern California in 1917, native species of ascidians previously found in the harbours have disappeared or have become much rarer. It is known to be a nuisance fouling species in aquaculture facilities such as mussel rope culture, oyster farms and suspended scallop ropes in Nova Scotia and other parts of North America, the Mediterranean, South Africa, Korea and Chile, and recently in the Marlborough Sounds, New Zealand. In Port Nelson this species was recorded in benthic sled samples and pile scrapes taken from the Layup and McGlashen Quay berths (Fig 28).

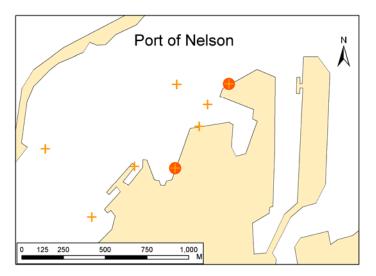
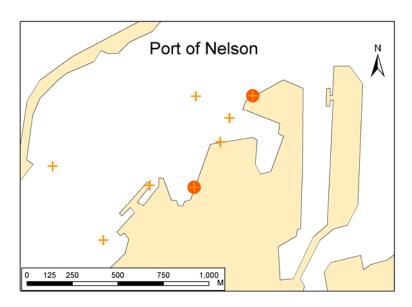



Figure 28: Ciona intestinalis presence (circle) and absence (cross) in the Port of Nelson

Cnemidocarpa sp (Kott, 1952)

This ascidian is in the family Styelidae. It appears to be a new species that is closely related to *C. nisiotus*, but varies from this species in gonad structure, the number of branchial tentacles and shape of rectal opening. It is not similar to any species described in Australia, Japan or South Africa. Its native distribution, habitat preferences and impacts are unknown. Specimens matching this description were also recovered from Gulf Harbour marina, Auckland, Tauranga, Gisborne, Taranaki, Picton, Lyttelton and Timaru during the port baseline surveys. In Port Nelson, specimens of *Cnemidocarpa* sp. were recovered from pile scrapings taken at the Lay-up and McGlashen Quay berths (Fig 29).

Figure 29: *Cnemidocarpa* sp presence (circle) and absence (cross) in the Port of Nelson

SPECIES INDETERMINATA

Thirty-four organisms from the Port of Nelson were classified as species indeterminata. If each of these organisms is considered a species of unresolved identity, then together they represent 17.3 % of all species collected from this survey (Fig 15). Species indeterminata from the Port of Nelson included eight species of Annelid worms, one Bryozoan, three Cnidarians, three Crustaceans, one Mollusc, 15 Phycophyta, one Platyhelminth and two Urochordate species (Table 9).

NOTIFIABLE AND UNWANTED SPECIES

Of the NIS identified from Port Nelson, none is currently listed as an unwanted species on the New Zealand register of unwanted organisms (Table 5a). However, the non-indigenous bivalve *Crassostrea gigas* was found in Port Nelson during this study and is included on the ABWMAC list of unwanted species in Australia (Table 5b).

The Asian kelp *Undaria pinnatifida* was not recorded during the present survey, despite being present in Port Nelson since 1997. *U. pinnatifida* has an annual heteromorphic lifecycle, characterised by a macroscopic sporophyte stage and a microscopic gametophyte stage. Macrosporophyte are typically most abundant in winter and early spring, but are absent in late summer (Thompson 2004). At the time the baseline survey was conducted (January 2002), adult sporophytes of *U. pinnatifida* are expected to be senescent or in low density, with only microscopic gametophytes or juvenile sporophytes present (Thompson 2004). *U. pinnatifida* sporophytes were subsequently detected in large abundance during NIWA surveys of Port Nelson in both 2003 and 2004 as part of a related Biosecurity New Zealand project on

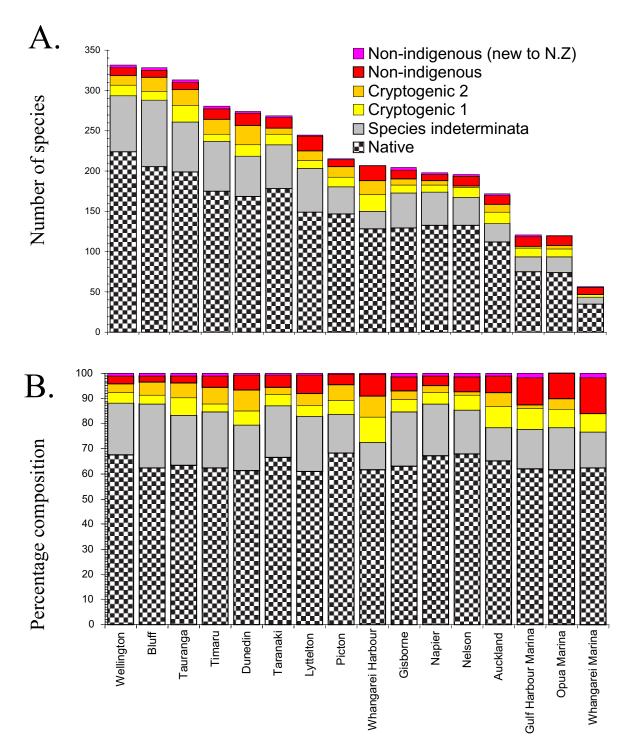
surveillance for marine pests (Project ZBS2001/01). *Undaria pinnatifida* is listed both in the New Zealand register of unwanted organisms (Table 5a) and ABWMAC (Table 5b), and is known to be widespread in New Zealand.

SPECIES NEW TO NEW ZEALAND

Six species from the Port of Nelson had not previously been recorded from New Zealand waters. These species are classified either as Category 2 cryptogenic species in Table 7, or are marked as new records in the non-indigenous species list (Table 8). Three species of sponge found in the Port of Nelson (Table 7) do not match existing species descriptions from New Zealand or overseas and may be new to science. The previously undescribed non-indigenous species found in the Port of Nelson included the Bryozoan *Celleporaria nodulosa* (see section 3.3.5 above), the Cnidarian *Lafoeina amirantensis* (see section 3.3.9 above), and the Ascidian *Cnemidocarpa sp.* (see section 3.3.13 above).

CYST-FORMING SPECIES

Cysts of four species of dinoflagellate were collected during this survey. They are listed as members of the Pyrrophycophyta in Table 6. No toxic, cryptogenic or non-indigenous dinoflagellate species were collected from this Port.


POSSIBLE VECTORS FOR THE INTRODUCTION OF NON-INDIGENOUS SPECIES TO THE PORT

The non-indigenous species located in Port Nelson are mostly thought to have arrived in New Zealand via international shipping. Table 8 indicates the possible vectors for the introduction of each NIS into the Port. Likely vectors of introduction are largely derived from Cranfield et al (1998) and indicate that approximately 7 % (one of the 14 NIS) probably arrived via ballast water, 79 % probably were introduced to New Zealand waters via hull fouling, and 14 % could have arrived via either of these mechanisms.

COMPARISON WITH OTHER PORTS

Sixteen locations (13 ports and three marinas) were surveyed during the summers of 2001/2002 and 2002/2003 (Fig. 1). The total number of species identified in these surveys varied from 336 in the Port of Wellington to 56 in Whangarei Town Basin Marina (Fig. 30a). The number of species recorded in each location reflects sampling effort (Table 3c) and local patterns of marine biodiversity within the ports and marinas. Sampling effort alone (expressed as the total number of registered samples in each port), accounted for significant proportions of variation in the numbers of native (Linear regression; $F_{1.14} = 33.14$, P < 0.001, $R^2 = 0.703$), Cryptogenic 1 ($F_{1.14} = 5.94$, P = 0.029, $R^2 = 0.298$) and Cryptogenic 2 ($F_{1.14} = 7.37$, P =0.017, $R^2 = 0.345$) species recorded in the different locations. However differing sampling effort between locations did not explain differences in the numbers of NIS found there ($F_{1,14}$ = 0.77, P = 0.394, $R^2 = 0.052$). Relative to the other ports and marinas surveyed, when we allow for differences in sampling effort between locations, the Port of Nelson had an above-average number of native, cryptogenic 1 and non-indigenous species, and a below-average number of cryptogenic 2 species (Fig 31). Largest numbers of NIS were reported from the ports of Lyttelton and Whangarei, but significantly more Cryptogenic 1 species were recorded in Whangarei Port than in other surveyed locations (Fig 31c, Studentised residual = 3.87).

Native organisms represented over 60 % of the species diversity sampled in each surveyed location, with a minimum contribution of 61 % in the Port of Lyttelton and a maximum of 68.5 % in Picton (Fig. 30b). Species indeterminata organisms represented between 10.6 % and 25.2 % of the sampled diversity in each location. Non-indigenous and category one and two cryptogenic species were present in each port and marina, although their relative contributions differed between locations (Fig. 30b). In the Port of Nelson, NIS comprised

7.1% of the total sampled diversity (Fig. 30b), which ranked it seventh highest in percentage composition of NIS from the sixteen locations surveyed.

Figure 30: Differences in (a) the number of species, and (b) the relative proportions of non-indigenous, cryptogenic, species indeterminata and native categories among the sixteen locations sampled over the summers of 2001 – 2002, and 2002-2003. Locations are presented in order of decreasing species diversity recorded.

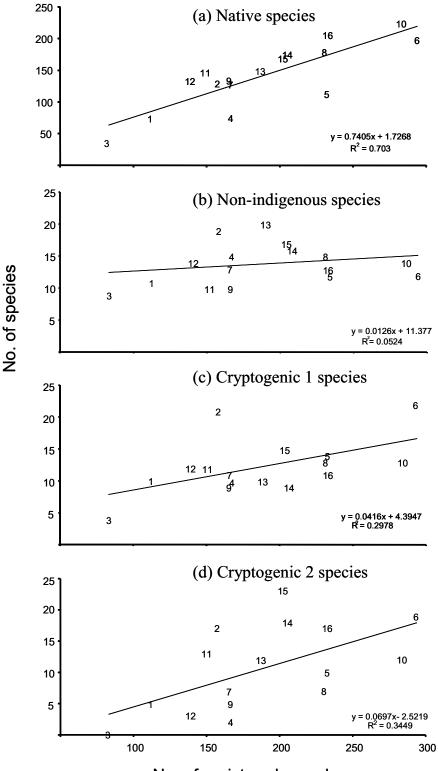


Figure 31: Linear regression equations relating numbers of species detected to sample effort at the 16 locations surveyed nation-wide. Location codes are as follows; 1 = Opua, 2 = Whangarei Port, 3 = Whangarei Marina, 4 = Gulf Harbour Marina, 5 = Auckland Port, 6 = Tauranga Port, 7 = Gisborne Port, 8 = Taranaki Port, 9 = Napier Port, 10 = Wellington Port, 11 = Picton Port, 12 = Nelson Port, 13 = Lyttelton Port, 14 = Timaru Port, 15 = Dunedin Port, 16 = Bluff Port

Assessment of the risk of new introductions to port

Many NIS introduced to New Zealand ports, through hull fouling, ships' sea chests, or ballast water discharge, do not survive to establish self-sustaining local populations. Those that do often come from coastlines that have similar marine environments to New Zealand. For example, approximately 80 % of the marine NIS known to be present within New Zealand are native to temperate coastlines of Europe, the northwest Pacific, and southern Australia (Cranfield et al. 1998). Commercial shipping arriving in the port of Nelson from overseas comes predominantly from temperate regions of the northwest Pacific (56 %), northeast Pacific (7 %) and Australia (7 %). Although some commercial international shipping arrives from the tropics including the Arabian Seas (7 %), and south Pacific (4%), the vast majority of commercial shipping arrives from temperate regions of the world where environments are broadly comparible to those in Nelson Harbour.

Relative to other ports in New Zealand, the Port of Nelson has a high number of visits from reefer ships carrying frozen foods (41% of international arrivals) and large fishing vessels (19% of international vessel arrivals). The Port receives a moderate number of bulk carriers (21% of arrivals) that trade volumes of bulk cargoes, and often export aquaculture products and fruit. The Port of Nelson received the fifth highest volume of reported ballast water discharge to New Zealand ports in 1999 (Inglis 2001). The total volume of ballast discharged in Port Nelson in 1999 was 157,000 m³, and was sourced from Japan (43,099 m³), Taiwan (9,335 m³) and Australia (3,243 m³), with an additional 100,238 m³ of ballast water discharged from unspecified source countries. Shipping from Japan, Taiwan and Australian regions thus presents an on-going risk of introduction of new NIS to Nelson Harbour. However, since the origin of 64% of the ballast water discharged into the port was not recorded, considerable uncertainty exists in the potential source of new NIS and warrants additional investigation.

Assessment of translocation risk for introduced species found in the port

Nelson is connected by frequent shipping traffic to the ports of Wellington, Picton, and Lyttelton with more than two domestic vessel visits per week. Less frequent vessel movements also connect it to the Port of New Plymouth by regular coastal shipping and, indirectly, to most other domestic ports throughout mainland New Zealand (Dodgshun et al 2004). Although many of the non-indigenous species found in the Nelson survey have been recorded previously in New Zealand, there were three notable exceptions: *Celleporaria nodulosa, Lafoeina amirantensis* and *Cnemidocarpa sp.* These three species were first described from New Zealand waters during these port surveys.

The bryozoan *Celleporaria nodulosa* was found to be present in the Ports of Nelson and Gisborne. Although it is known to have a widespread distribution on the southeastern coast of Australia, little is currently known about this species' native range or impacts in its introduced range. The cnidarian *Lafoeina amirantensis* was first discovered in New Zealand waters from the Port of Nelson, and was not detected in any of the fifteen other locations searched nationwide. This hydroid is known to occur in South Australia and the Seychelles, although details of its native and introduced range and ecological impacts are unknown. The ascidian *Cnemidocarpa sp.* was found to be present in Auckland, Gisborne, Gulf Harbour Marina, Nelson, Picton, Tauranga, Taranaki, Timaru and Wellington ports. Again, little is currently known about this species, however it now appears to be widely spread through New Zealand's shipping ports where it may be competing for space with native fauna in fouling assemblages.

The highly invasive alga, *Undaria pinnatifida*, has been present in Nelson since 1997. This species was not detected during the January 2002 port survey, but its continuing presence in the port was confirmed by NIWA surveys in both 2003 and 2004 (Project ZBS2001/01). *Undaria* has been spread through shipping and other vectors to 11 of the 16 ports and marinas surveyed during the baseline surveys (the exceptions are Opua, Whangarei Port and Marina, Gulf Harbour Marina and Tauranga Port). A control programme in Bluff Harbour has subsequently removed *Undaria* populations established there. Nevertheless, vessels departing from Nelson after having spent time at berth within the port may pose a significant risk of spreading this species to ports within New Zealand that remain uninfested. The risk of translocation of *U. pinnatifida* and other fouling species is highest for slow-moving vessels, such as yachts and barges, and vessels that have long residence times in port. In Nelson, coal barges, recreational craft, and seasonal fishing vessels that are laid up for significant periods of time pose a particularly high risk for the spread of these species.

Management of existing non-indigenous species in the port

Many of the NIS detected in this survey appear to be well established in the Port of Nelson. For instance, *Conopeum seurati, Watersipora subtorquata, Crassostrea gigas, Ciona intestinalis* and *Cnemidocarpa sp.* were all detected from multiple samples or sites within the port. However a number of NIS were only found from a single replicate during the survey and it is unclear whether they have formed viable populations in the Port. These species include the newly discovered *Celleporaria nodulosa* and *Lafoeina amirantensis*. Further surveys that target these species are necessary to determine the true extent of their populations in the port.

For most marine NIS eradication by physical removal or chemical treatment is not yet a costeffective option. Many of the species recorded in Nelson are widespread and local population controls are unlikely to be effective. Management should be directed toward preventing spread of potentially harmful species established in Nelson Harbour to locations where they do not presently occur. Such management will require better understanding of the frequency of movements by vessels of different types from Nelson to other domestic and international locations and improved procedures for hull maintenance and domestic ballast transfer by vessels leaving this port.

Prevention of new introductions

Interception of unwanted species transported by shipping is best achieved offshore, through control and treatment of ships destined for Nelson from high-risk locations elsewhere in New Zealand or overseas. Under the Biosecurity Act 1993, the New Zealand Government has developed an Import Health Standard for ballast water that requires large ships to exchange foreign coastal ballast water with oceanic water prior to entering New Zealand, unless exempted on safety grounds. This procedure ("ballast exchange") does not remove all risk, but does reduce the abundance and diversity of coastal species that may be discharged with ballast. Ballast exchange requirements do not currently apply to ballast water that is uptaken domestically. Globally, shipping nations are moving toward implementing the *International Convention for the Control and Management of Ships Ballast Water & Sediments* that was recently adopted by the International Maritime Organisation (IMO). By 2016 all merchant vessels will be required to meet discharge standards for ballast water that are stipulated within the agreement.

Options are currently lacking, however, for effective in-situ treatment of biofouling and seachests. Biosecurity New Zealand has recently embarked on a national survey of hull fouling on vessels entering New Zealand from overseas. The study will characterise risks from this pathway (including high risk source regions and vessel types) and identify predictors of risk that may be used to manage problem vessels. Shipping companies and vessel owners can reduce the risk of transporting NIS in hull fouling or sea chests through regular maintenance and antifouling of their vessels.

Overseas studies have suggested that changes in trade routes can herald an influx of new NIS from regions that have not traditionally had major shipping links with the country or port (Carlton 1987). The growing number of baseline port surveys internationally and an associated increase in published literature on marine NIS means that information is becoming available that will allow more robust risk assessments to be carried out for new shipping routes. We recommend that port companies consider undertaking such assessments for their ports when new import or export markets are forecast to develop. The assessment would allow potential problem species to be identified and appropriate management and monitoring requirements to be put in place.

Conclusions and recommendations

The national biological baseline surveys have significantly increased our understanding of the identity, prevalence and distribution of introduced species in New Zealand's shipping ports. They represent a first step towards a comprehensive assessment of the risks posed to native coastal marine ecosystems from non-indigenous marine species. Although measures are being taken by the New Zealand government to reduce the rate of new incursions, foreign species are likely to continue being introduced to New Zealand waters by shipping, especially considering the lack of management options for hull fouling introductions. There is a need for continued monitoring of marine NIS in port environments to allow for (1) early detection and control of harmful or potentially harmful non-indigenous species, (2) to provide on-going evaluation of the efficacy of management activities, and (3) to allow trading partners to be notified of species that may be potentially harmful. Baseline inventories, like this one, facilitate the second and third of these two purposes. They become outdated when new introductions occur and, therefore, should be repeated on a regular basis to ensure they remain current. Hewitt and Martin (2001) recommend an interval of three to five years between repeat surveys.

The predominance of hull fouling as a likely introduction vector for NIS encountered in the Port of Nelson (probably responsible for 79% of the NIS introductions) is consistent with previous findings from a range of overseas locations. For instance, Hewitt et al (1999) attributed the introduction of 77 % of the 99 NIS encountered in Port Phillip Bay (Australia) to hull fouling, and only 20 % to ballast water. Similarly, 61 % of the 348 marine and brackish water NIS established in the Hawaiian Islands are thought to have arrived on ships' hulls, but only 5 % in ballast water (Eldredge and Carlton 2002). However, ballast water is thought to be responsible for the introduction of 30 % of the 212 marine NIS established in San Fransisco Bay (USA), compared to 34 % for hull fouling (Cohen and Carlton 1995). Many of the species thought to have been introduced to Australiasia by hull fouling are likely to be historical introductions (> 80 years ago; Hewitt et al 1999). However, the fact that some recent marine introductions (e.g. *Undaria pinnatifida, Codium fragile sp. tomentosoides*) have been facilitated by hull fouling suggests that hull fouling remains an important transport mechanism for unwanted marine species (Cranfield et al 1998; Hewitt et al 1999).

Non-indigenous marine species can have a range of adverse impacts on natural ecosystems and upon the economic, social and cultural values that they support. For instance, NIS can cause ecological impacts through competition with native species for resources, predator-prey interactions, hybridisation, parasitism or toxicity and can modify the physical environment through altering habitat structure (Ruiz et al 1999; Ricciardi 2001). Although more than 140 non-indigenous species have been reported from New Zealand coastal waters, there have been few studies of their impacts. Detailed studies have been conducted on just three species: the cord grass, *Spartina anglica*, the Japanese kelp, *Undaria pinnatifida*, and the Asian nestling mussel, *Musculista senhousia*. Assessing the impact of a NIS in a given location ideally requires information on a range of factors, including the mechanism of their impact and their local abundance and distribution (Parker et al 1999). To predict or quantify NIS impacts over larger areas or longer time scales requires additional information on the species' seasonality, population size and mechanisms of dispersal (Mack et al 2000). Further studies are needed to establish the abundance and potential impacts of the non-indigenous species encountered in this port to determine the threat they represent to New Zealand's native ecosystems.

Acknowledgements

We thank the Port of Nelson for access to its facilities and assistance during the survey, and Neil McLennan for port information. We also thank the following people for field assistance with the diving, boat, trapping and sorting of organisms during this survey program: Aleki Taumoepeau, Anna Bradley, Anthony Dugdale, Corina Kemp, Crispin Middleton, Evan Skipworth, Gavin Newmarch, Geoff Holland, Graeme MacKay, Ian Maze, Jeff Forman, John Hunt, Kate Neill, Marty Flanagan, Matt Smith, Mike Page, Neil Blair, Niki Davey, Peter Marriott, Phil James, Rob Stewart, Rob Tasker, Scott Stephens, Sean Handley, Stephen Brown, Todd Williston, Tony Dugdale and Walter Hillman. Many thanks to Don Morrisey for reviewing drafts of this report.

We also extend our thanks to the numerous taxonomists involved in this programme, including: Bruce Marshall, Clive Roberts, Colin McLay, David Staples, Dennis Gordon, Don McKnight, Fukuuoka Kouki, Geoff Read, Hoe Chang, Jan Watson, Lesley Newman, Michelle Kelly, Mike Page, Niel Bruce, Niki Davey, Patricia Kott, Sean Handley and Wendy Nelson.

References

Allan R (1954) The History of Port Nelson. Whitcombe and Tombs, Wellington

- AMOG Consulting (2002). Hull fouling as a vector for the translocation of marine organisms. Phase I: Hull fouling research. Ballast Water Research Series, Report No. 14. Department of Agriculture, Fisheries and Forestry Australia, Canberra.
- Andrews D, Whayman G, Edgar G (1996) Assessment of optimal trapping techniques to control densities of the northern Pacific seastars on marine farm leases. Report No. FRDC 95/066
- ASR Marine Consulting and Research Ltd. (2003) Port Nelson reclamation: physical environmental assessment. Prepared for Port Nelson Ltd. ASR Ltd, Hamilton
- Australian Faunal Directory. (2005). Australian Biological Resources Study. Viewed 22 July 2005. http://www.deh.gov.au/biodiversity/abrs/online-resources/fauna/afd/index.html
- Barter P (1999) Sediment assessment in the Port Nelson slipway basin. Prepared for Port Nelson Ltd. Cawthron Institute, Nelson
- Campbell, M. (2004). Analysis of vessel entries into New Zealand between 1998 and 2003. Unpublished report, Ministry of Fisheries, Wellington.
- Carlton, J.T. (1985). Transoceanic and inter-oceanic dispersal of coastal marine organisms: the biology of ballast water. *Oceanography and Marine Biology Annual Reviews 23*: 313-371.
- Carlton, J.T. (1987). Patterns of transoceanic marine biological invasions in the Pacific Ocean. Bulletin of Marine Science 41: 452-465.
- Carlton, J.T. (1992). Blue immigrants: the marine biology of maritime history. *The Log of Mystic Seaport Museum* 44: 31-36.

Carlton, J.T (1996) Biological invasions and cryptogenic species. Ecology 77:1653-1655.

- Carlton, J.T. (1999). The scale and ecological consequences of biological invasions in the world's oceans. Pp. 195-212. *In*: Invasive species and biodiversity management. Sandlund, T.; Schei, P.J.; Viken, A. (Eds.). Kluwer Academic, Dordrecht.
- Carlton, J.T.; Geller, J. (1993). Ecological roulette: The global transport of non-indigenous marine organisms. *Science 261*: 78-82.
- Chapman, J.W.; Carlton, J.T. (1991). A test of criteria for introduced species: the global invasion by the isopod *Synidotea laevidorsalis* (Miers, 1881). *Journal of Crustacean Biology 11*: 386-400.
- Chapman, J.W.; Carlton, J.T. (1994). Predicted discoveries of the introduced isopod *Synidotea laevidorsalis* (Miers, 1881). *Journal of Crustacean Biology* 14: 700-714.
- Cocito, S; Ferdeghini, F; Morri, C; Bianchi, C.N. (2000). Patterns of bioconstruction in the cheilostome bryozoan Schizoporella errata: The influence of hydrodynamics and associated biota. *Marine Ecology Progress Series* 192: 153-161.
- Cohen, A.N.; Carlton, J.T. (1995). Non-indigenous Aquatic Species in a United States Estuary: A Case Study of the Biological Invasions of the San Francisco Bay and Delta.
- Coutts, A.D.M., 2002. A biosecurity investigation of a barge in the Marlborough Sounds: Cawthron Institute Report 744, 68 p.
- Coutts, A.; Moore, K.; Hewitt, C. (2003). Ships' sea chests: an overlooked transfer mechanisms for non-indigenous marine species? *Marine Pollution Bulletin 46*: 1504-1515.
- Cranfield, H.; Gordon, D.; Willan, R.; Marshall, B.; Battershill, C.; Francis, M.; Glasby, G.; Read, G. (1998). Adventive marine species in New Zealand. *NIWA Wellington Technical Report No. 34*.
- Dodgshun, T.; Taylor, M.; Forrest, B. (2004). Human-mediated pathways of spread for nonindigenous marine species in New Zealand. Cawthron Report 700, prepared for the Department of Conservation. Cawthron Institute, Nelson. 39 pp.
- Eldredge, L.; Smith, C.M. (ed.s) 2001. Guidebook of Introduced Marine Species of Hawaii. Bishop Museum Technical Report 21. 70 pp.
- Eldredge, L.; Carlton, J.T. (2002). Hawaiian marine bioinvasions: a preliminary assessment. *Pacific Science 56*: 211-212.
- Ferrell, D.; Avery, R.; Blount, C.; Hayes, L.; Pratt, R. (1994). The utility of small, baited traps for surveys of snapper (*Pagrus auratus*) and other demersal fishes. NSW Fisheries Research Institute Report. NSW Fisheries Research Institute, Cronulla, NSW, Australia.
- Forrest B, Roberts R (1995) Effects of stormwater runoff from log and woodchip stockpile areas, Port Nelson. Prepared for Port Nelson Ltd. Cawthron Institute, Nelson
- Gordon, D.; Matawari, S. (1992). Atlas of marine fouling bryozoa of New Zealand Ports and Harbours. Miscellaneous Publications of the New Zealand Oceanographic Institute. New Zealand Oceanographic Institute. 52 p.
- Grosholz, E. (2002) Ecological and evolutionary consequences of coastal invasions. *Trends in Ecology and Evolution* 17:22-27.
- Gust, N.; Inglis, G.; Hayden, B. (2001). Design of baseline surveys for exotic marine organisms. Final research report for MFISH project ZBS2000/04. National Institute of Water and Atmospheric Research, Christchurch.
- Handley, S. (1995). Spionid polychaetes in Pacific oysters, *Crassostrea gigas* (Thunberg) from Admiralty Bay, Marlborough Sounds, New Zealand. *New Zealand Journal of Marine and Freshwater Research* 29: 305-309.
- Hewitt, C.; Campbell, M.; Thresher, R.; Martin, R. (1999). Marine biological invasions of Port Phillip Bay, Victoria. Report No. 20, Centre for Research on Introduced Marine Pests, Hobart.
- Hewitt C., Martin R. (1996) Port surveys for introduced marine species background considerations and sampling protocols. CRIMP technical report no 4. CSIRO Division of Fisheries, Hobart.

- Hewitt, C.; Martin, R. (2001). Revised protocols for baseline surveys for introduced marine species- survey design, sampling protocols and specimen handling. Report No. 22, Centre for Research on Introduced Marine Pests, Hobart.
- Hopkins G, Barter P (2001) Assessment of variations to dredging disposal at Port Nelson. Cawthron Institute, Nelson
- Inglis,G. (2001). Criteria for selecting New Zealand ports and other points of entry that have a high risk of invasion by new exotic marine organisms. Final research report for Ministry of Fisheries research project ZBS2000/01A, objectives 1 & 2. NIWA, Wellington. 27pgs.
- Kott, P. 2002. A complex didemnid ascidian from Whangamata, New Zealand. *Journal of Marine Biology Association of the United Kingdom* 82: 625-628.
- Kott, P. 2004. A new species of *Didemnum* (Ascidiacea, Tunicata) from the Atlantic coast of North America. *Zootaxa* 732: 1-10.
- Lleonart, M; Handlinger, J; Powell, M. (2003). Spionid mudworm infestation of farmed abalone (*Haliotis* spp.). *Aquaculture* 221: 85-96.
- Leppäkoski, E.; Gollasch, S.; Gruszka, P.; Ojaveer, H.; Olenin, S.; Panov, V. (2002). The Baltic a sea of invaders. *Canadian Journal of Fisheries and Aquatic Sciences 59*: 1175-1188.
- Mack, R.; Simberloff, D.; Lonsdale, W.; Evans, H.; Clout, M.; Bazzaz, F. (2000). Biotic invasions: causes, epidemiology, global consequences and control. *Ecological Applications 10*: 689-710.
- Matsuoka, K.; Fukuyo, Y. (2000). Technical guide for modern dinoflagellate cyst study. Report prepared for the WESTPAC-HAB Project. WESTPAC-HAB/WESTPAC/IOC <<u>http://dinos.anesc.u-tokyo.ac.jp/technical_guide/main.pdf</u>> 77p.
- Migotto, A.E.; Cabral, A.S. (2005) *Lafoeina amirantensis* (Cnidaria: Hydrozoa, Campanulinoidea), the hydroid stage of the medusa *Cirrholovenia tetranema* (Cnidaria: Hydrozoa, Lovenelloidea). *Zootaxa* 919: 1-16.
- Ministry of Works and Development (1986) Port of Nelson hydrodynamic model study. Volume 2. Prepared for Nelson Harbour Board. Ministry of Works and Development, Hamilton
- Nel, R; Coetzee, PS; Van Niekerk, G. (1996). The evaluation of two treatments to reduce mud worm (*Polydora hoplura* Claparede) infestation in commercially reared oysters (*Crassostrea gigas* Thunberg). *Aquaculture* 141: 31-39.
- Nelson City Council. (2003) Nelson State of the Environment Report: Coast 2003. Nelson City Council, Nelson
- NIMPIS (2002a) *Bugula flabellata* species summary. National Introduced Marine Pest Information System. Hewitt, C.L.; Martin, R.B.; Sliwa, C.; McEnnulty, F.R.; Murphy, N.E.; Jones, T.; Cooper, S. (Eds.:). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>
- NIMPIS (2002b) Ciona intestinalis species summary. National Introduced Marine Pest Information System (Eds: Hewitt CL, Martin RB, Sliwa C, McEnnulty FR, Murphy NE, Jones T & Cooper S). Web publication http://crimp.marine.csiro.au/nimpis>, Date of access: 3/25/2004
- NIMPIS (2002c) Crassostrea gigas species summary. National Introduced Marine Pest Information System (Eds: Hewitt CL, Martin RB, Sliwa C, McEnnulty FR, Murphy NE, Jones T & Cooper S). Web publication http://crimp.marine.csiro.au/nimpis, Date of access: 3/24/2004
- NIMPIS (2002d). Cryptosula pallasiana species summary. National Introduced Marine Pest Information System. Hewitt, C.L.; Martin, R.B.; Sliwa, C.; McEnnulty, F.R.; Murphy, N.E.; Jones, T.; Cooper, S. (Eds:.). Web publication <u>http://crimp.marine.csiro.au/nimpis</u> Date of access: 3/25/2004
- NIMPIS (2002e) Theora lubrica species summary. National Introduced Marine Pest Information System. Hewitt, C.L.; Martin, R.B.; Sliwa, C.; McEnnulty, F.R.; Murphy,

N.E.; Jones, T.; Cooper, S. (Eds:.). Web publication <u>http://crimp.marine.csiro.au/nimpis</u>, Date of access: 3/24/2004

- Parker, I.; Simberloff, D.; Lonsdale, W.; Goodell, K.; Wonham, M.; Kareiva, P.; Williamson, M.; Holle, B.V.; Moyle, P.; Byers, J.; Goldwasser, L. (1999). Impact: Toward a Framework for Understanding the Ecological Effects of Invaders. *Biological Invasions* 1: 3-19.
- Pregenzer, C. (1983). Survey of metazoan symbionts of *Mytilus edulis* (Mollusca: Pelecypoda) in Southern Australia. *Australian Journal of Marine and Freshwater Research* 34: 387-396.
- Ricciardi A (2001) Facilitative interactions among aquatic invaders: is an "invasional meltdown" occurring in the Great Lakes? *Canadian Journal of Fisheries and Aquatic Sciences* 58: 2513-2525.
- Roberts R (1992) Impact of dredging and dredgings disposal in Nelson: a consideration of chemical contaminants. Prepared for Port Nelson Ltd. Cawthron Institute, Nelson
- Ruiz, G.; Fofonoff, P. Hines, A.; Grosholz, E. (1999). Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. *Limnology and Oceanography* 44: 950-972.
- Sinner, J.; Forrest, B.; Taylor, M. (2000). A strategy for managing the Asian kelp *Undaria*: final report. Cawthron Report 578, 119pp. Prepared for Ministry of Fisheries.
- Smithsonian Tropical Research Institute (2004). Bocas del Toro Species Database. Viewed 22 July 2005. http://striweb.si.edu/bocas_database/details.php?id=2373.
- StatisticsNewZealand(2004).OverseasCargoStatistics.http://www2.stats.govt.nz/domino/external/pasfull/pasfull.nsf/7cf46ae26dcb6800cc256a62000a2248/4c2567ef00247c6acc256f16000eb4a4?OpenDocument, accessed 12/05/05
- Stevens L (1997) Assessment of the effects of four reclamation and dredging options at Port Nelson. Prepared for Port Nelson Ltd. Cawthron Institute, Nelson
- Taylor, M.; MacKenzie, L. (2001). Delimitation survey of the toxic dinoflagellate *Gymnodinium catenatum* in New Zealand. Cawthron Report 661, 12pp. Prepared for Ministry of Fisheries.
- Thompson, G.A. 2004. Mechanisms of invasion and persistence of the invasive kelp *Undaria pinnatifida* (Harvey) Suringar within intertidal areas of southern New Zealand. PhD Thesis, University of Canterbury, Christchurch. 165 pp.
- Thompson RMC (1981) A bibliography of the major ports and harbours of New Zealand (marine geology, physical oceanography and related topics). New Zealand Oceanographic Institute, Wellington
- Thrush, S.F.; Schultz, D.; Hewitt, J.E.; Talley, D. (2002). Habitat structure in soft sediment environments and abundance of juvenile snapper *Pagrus auratus*. *Marine Ecology Progress Series 245*: 273-280.
- Warwick, R. M. (1996). Marine biodiversity: a selection of papers presented at the conference "Marine Biodiversity: causes and consequences", York, U.K. 30 August - 2 September 1994. *Journal of Experimental Marine Biology and Ecology* 202: IX-X.
- Wilcove, D.; Rothstein, D.; Dubow, J.; Phillips, A.; Losos, E. (1998). Quantifying threats to imperiled species in the United States. *Bioscience* 48: 607-615.
- <<u>www.fish.govt.nz/sustainability/biosecurity</u>>: Ministry of Fisheries website. Accessed 7/6/05
- <<u>www.ncc.govt.nz</u>>: Nelson City Council website. Accessed 17/06/05
- <<u>www.portnelson.co.nz</u>>: Nelson Port Company website. Accessed 17/06/05
- <<u>www.teara.govt.nz</u>>: What's the story? The Encyclopedia of New Zealand, Ministry for Culture and Heritage website. Accessed 20/6/05

TablesTable 1:Berthage facilities in the Port of Nelson.

Berth	Section No.	Purpose	Construction	Length (m)	Depth (m below chart datum)
Coastal Berth		Multipurpose	Concrete deck/wood piles	85	6
Main Wharf	North	Heavy-duty cargo, petroleum products	Wood deck/wood piles	160	9
	South		Concrete deck/concrete piles + wooden fender piles	119	10.5
Brunt Quay		Heavy-duty cargo	Concrete deck/concrete piles + wooden fender piles	196	10.3
McGlashen Quay	North	General and break-bulk cargoes	Concrete deck/wood piles	155	9.2
	South	Bitumen and methanol discharge	Concrete deck/wood piles	200	9.2
Kingsford Quay		Break bulk, general cargoes, logs	Concrete deck/wood piles	174	9.5
	East	Break bulk, general cargoes, logs, vessel	Concrete deck/wood piles	85	6.5
Lay-up Berth	1	Lay-up, fish unloading	Solid concrete	85	8
	2		Solid concrete	65	6.5
	3 + pontoon		Solid concrete + steel pontoon on wood piles	105	5.5
McKellar Quay (Sealord)	East	Independently operated fishing vessels	Concrete deck/wood piles	128	7
	Centre		Concrete deck/wood piles	60	5
	West		Concrete deck/wood piles	45	5.5
Dog Leg (Sanford Ltd)			Concrete deck/wood piles	43	5.5
Amaltal Fishing Co.			Concrete deck/wood piles	130	7
Donker Marine			Concrete deck/wood piles	70	5

Table 2: Comparison of survey methods used in this study with the CRIMP protocols
(Hewitt and Martin 2001), indicating modifications made to the protocols
following recommendations from a workshop of New Zealand scientists. Full
details of the workshop recommendations can be found in Gust et al. (2001).

	CRIMP Pro	tocol	NIWA Method	l	
Taxa sampled	Survey method	Sample procedure	Survey method	Sample procedure	Notes
Dinoflagellate cysts	Small hand core	Cores taken by divers from locations where sediment deposition occurs	TFO Gravity core ("javelin" core)	Cores taken from locations where sediment deposition occurs	Use of the javelin core eliminated the need to expose divers to unnecessary hazards (poor visibility, snags, boat movements, repetitive dives > 10 m). It is a method recommended by the WESTPAC/IOC Harmful Algal Bloom project for dinoflagellate cyst collection (Matsuoka and Fukuyo 2000)
Benthic infauna	Large core	3 cores close to (0 m) and 3 cores away (50 m) from each berth	Shipek benthic grab	3 cores within 10 m of each sampled berth and at sites in the port basin	Use of the benthic grab eliminated need to expose divers to unnecessary hazards (poor visibility, snags, boat movements, repetitive dives > 10 m).
Dinoflagellates	20µm plankton net	Horizontal and vertical net tows	Not sampled	Not sampled	Plankton assemblages spatially and temporally variable, time- consuming and difficult to identify to species. Workshop recommended using resources to sample other taxa more comprehensively
Zooplankton and/ phytoplankton	100 μm plankton net	Vertical net tow	Not sampled	Not sampled	Plankton assemblages spatially and temporally variable, time- consuming and difficult to identify to species. Workshop recommended using resources to sample other taxa more comprehensively
Crab/shrimp	Baited traps	3 traps of each kind left overnight at each site	Baited traps	4 traps (2 line x 2 traps) of each kind left overnight at each site	
Macrobiota	Qualitative visual survey	Visual searches of wharves & breakwaters for target species	Qualitative visual survey	Visual searches of wharves & breakwaters for target species	

	CRIMP Protocol		NIWA Metho	d	
Taxa sampled	Survey method	Sample procedure	Survey method	Sample procedure	Notes
Sedentary / encrusting biota	Quadrat scraping	0.10 m ² quadrats sampled at - 0.5 m, -3.0 m and -7.0 m on 3 outer piles per berth	Quadrat scraping	0.10 m ² quadrats sampled at - 0.5 m, -1.5 m, -3.0 m and -7 m on 2 inner and 2 outer piles per berth	Workshop recommended extra quadrat in high diversity algal zone (-1.5 m) and to sample inner pilings for shade tolerant species
Sedentary / encrusting biota	Video / photo transect	Video transect of pile/rockwall facing. Still images taken of the three 0.10 m ² quadrats		Video transect of pile/rockwall facing. Still images taken of the four 0.10 m ² quadrats	
Mobile epifauna	Beam trawl or benthic sled	1 x 100 m or timed trawl at each site	Benthic sled	2 x 100 m (or 2 min.) tows at each site	
Fish	Poison station	Divers & snorkelers collect fish from poison stations	Opera house fish traps	x 2 traps) left	Poor capture rates anticipated from poison stations because of low visibility in NZ ports. Some poisons also an OS&H risk to personnel and may require resource consent.
Fish/mobile epifauna	Beach seine	25 m seine haul on sand or mud flat sites	Opera house fish traps / Whayman Holdsworth starfish traps	4 traps (2 lines x 2 traps) of left at each site (Whayman Holdworth starfish traps left overnight)	Few NZ ports have suitable intertidal areas to beach seine.

Sample method	Number of shipping berths sampled	Number of replicate samples taken
Benthic Sled Tows	4	8
Benthic Grab (Shipek)	1 ^a	2
Box traps	4	16
Diver quadrat scraping	4	55
Opera house fish traps	4	16
Starfish traps	4	16
Shrimp traps	4	16
Javelin cores	N/A	8

Table 3a:Summary of the Port of Nelson sampling effort.

^a Shipek grab malfunctioned during the Port of Nelson sampling.

Table 3b:Pile scraping sampling effort in the Port of Nelson. Number of replicate
quadrats scraped on outer (unshaded) and inner (shaded) pier piles at
four depths. Pile materials scraped are indicated. Miscellaneous samples
are opportunistic additional specimens collected from piles outside of the
scraped quadrat areas.

Sample Depth (m)	Outer Piles	Inner Piles
0.5	2 concrete, 6 wood	2 concrete, 6 wood
1.5	2 concrete, 6 wood	2 concrete, 6 wood
3.5	2 concrete, 6 wood	2 concrete, 3 wood
7	2 concrete, 6 wood	1 wood
Miscellaneous	Nil	1 concrete

Benthic Diver Opera sled Benthic Box quadrat house Starfish Shrimp Javelin Survey Location tows grab traps scraping traps traps traps cores Port of Nelson 5 (10) 6 (20) 5 (77) 5 (20) 6 (20) 6 (19) N/A (8) 5 (15) Port of Nelson 4 (8) 1 (2) * 4 (16) 4 (55) 4 (16) 4 (16) 4 (16) N/A (8) Port of Picton * 3 (6) 3 (18) 3 (53) 3 (16) 3 (24) 3 (24) N/A (6) Port of Taranaki 6 (12) 6 (21) 7 (25) 4 (66) 6 (24) 6 (24) 6 (24) N/A (14) Port of Tauranga 6 (18) 6 (28) 8 (32) 6 (107) 6 (25) 7 (28) 7 (28) N/A (8) Port of Timaru 6 (12) 4 (14) 5 (20) 4 (58) 5 (20) 5 (20) 5 (20) N/A (8) Port of Wellington 6 (98) 7 (13) 6 (18) 7 (28) 7 (34) 7 (28) 7 (28) N/A (6) Port of Auckland 6 (24) 6 (101) 6 (24) 6 (24) 5 (20) 6 (12) 6 (18) N/A (10) Port of Bluff 6 (21) 7 (21) 7 (29) 5 (75) 6 (24) 7 (28) 7 (24) N/A (12) **Dunedin Harbour** 5 (10) 5 (15) 5 (20) 5 (75) 5 (20) 5 (20) 5 (18) N/A (9) Port of Gisborne 5 (10) 6 (18) 5 (20) 4 (50) 5 (20) 5 (20) 5 (20) N/A (8) Gulf Harbour Marina N/A (17) 4 (12) 4 (16) 4 (66) 4 (16) 4 (16) 4 (16) N/A (8) Port of Napier 5 (10) 5 (15) 5 (18) 4 (59) 5 (20) 5 (18) 5 (18) N/A (8) **Opua Marina** N/A (10) 4 (12) 4 (12) 4 (46) 4 (8) 4 (8) 4 (8) N/A (8) Whangarei Marina 3 (6) 2 (6) 2 (8) 4 (33) 2 (8) 2 (8) 2 (8) N/A (6) Whangarei Harbour 4 (9) 4 (16) 4 (65) 4 (16) 4 (16) N/A (7) 4 (12) 4 (16)

Table 3c:Summary of sampling effort in Ports and Marinas surveyed during the
austral summers of 2001-2002 (shown in bold type), and 2002-2003 (shown
in plain type). The number of shipping berths sampled is indicated, along
with the total numbers of samples taken (in brackets).

* Shipek grab malfunctioned in the Ports of Nelson and Picton

5 % Formalin solution	10 % Formalin solution	70 % Ethanol solution	Air dried
Phycophyta	Asteroidea	Alcyonacea ²	Bryozoa
	Brachiopoda	Ascidiacea ^{1, 2}	
	Crustacea (large)	Crustacea (small)	
	Ctenophora ¹	Holothuria ^{1, 2}	
	Echinoidea	Mollusca (with shell)	
	Hydrozoa	Mollusca ^{1,2} (without shell)	
	Nudibranchia ¹	Platyhelminthes ¹	
	Ophiuroidea	Porifera ¹	
	Polychaeta	Zoantharia ^{1, 2}	
	Scleractinia		
	Scyphozoa ^{1, 2}		
	Vertebrata ¹ (pisces)		

Table 4:Preservatives used for the major taxonomic groups of organisms collected
during the port survey. 1 indicates photographs were taken before
preservation, and 2 indicates they were relaxed in magnesium chloride or
menthol prior to preservation.

Table 5a:Marine pest species listed on the New Zealand register of unwanted
organisms under the Biosecurity Act 1993.

Phylum	Class/Order	Genus and Species
Annelida	Polychaeta	Sabella spallanzanii
Arthropoda	Decapoda	Carcinus maenas
Arthropoda	Decapoda	Eriocheir sinensis
Echinodermata	Asteroidea	Asterias amurensis
Mollusca	Bivalvia	Potamocorbula amurensis
Phycophyta	Chlorophyta	Caulerpa taxifolia
Phycophyta	Phaeophyceae	Undaria pinnatifida

Table 5b:Marine pest species listed on the Australian Ballast Water Management
Advisory Council's (ABWMAC) schedule of non-indigenous pest species.

Phylum	Class/Order	Genus and Species
Annelida	Polychaeta	Sabella spallanzanii
Arthropoda	Decapoda	Carcinus maenas
Echinodermata	Asteroidea	Asterias amurensis
Mollusca	Bivalvia	Corbula gibba
Mollusca	Bivalvia	Crassostrea gigas
Mollusca	Bivalvia	Musculista senhousia
Phycophyta	Dinophyceae	Alexandrium catenella
Phycophyta	Dinophyceae	Alexandrium minutum
Phycophyta	Dinophyceae	Alexandrium tamarense
Phycophyta	Dinophyceae	Gymnodinium catenatum

Phylum, Class	Order	Family	Genus and species
Annelida			
Polychaeta	Eunicida	Dorvilleidae	Dorvillea australiensis
Polychaeta	Eunicida	Lumbrineridae	Lumbricalus aotearoae
Polychaeta	Eunicida	Onuphidae	Kinbergonuphis proalopus
Polychaeta	Phyllodocida	Glyceridae	Glycera lamelliformis
Polychaeta	Phyllodocida	Nephtyidae	Aglaophamus verrilli
Polychaeta	Phyllodocida	Nereididae	Neanthes kerguelensis
Polychaeta	Phyllodocida	Nereididae	Nereis falcaria
Polychaeta	Phyllodocida	Nereididae	Perinereis amblyodonta
Polychaeta	Phyllodocida	Nereididae	Perinereis camiguinoides
Polychaeta	Phyllodocida	Nereididae	Perinereis pseudocamiguina
Polychaeta	Phyllodocida	Phyllodocidae	Eulalia microphylla
Polychaeta	Phyllodocida	Polynoidae	Lepidastheniella comma
Polychaeta	Phyllodocida	Polynoidae	Lepidonotus polychromus
Polychaeta	Phyllodocida	Sigalionidae	Labiosthenolepis laevis
Polychaeta	Sabellida	Oweniidae	Owenia petersenae
Polychaeta	Sabellida	Sabellidae	Demonax aberrans
Polychaeta	Sabellida	Sabellidae	Euchone pallida
Polychaeta	Sabellida	Serpulidae	Galeolaria hystrix
Polychaeta	Sabellida	Serpulidae	Spirobranchus cariniferus
Polychaeta	Spionida	Spionidae	Boccardia acus
Polychaeta	Spionida	Spionidae	Boccardia chilensis
Polychaeta	Spionida	Spionidae	Boccardia lamellata
Polychaeta	Terebellida	Cirratulidae	Protocirrineris nuchalis
Polychaeta	Terebellida	Cirratulidae	Timarete anchylochaetus
Polychaeta	Terebellida	Flabelligeridae	Flabelligera affinis
Polychaeta	Terebellida	Terebellidae	Nicolea armilla
Polychaeta	Terebellida	Terebellidae	Nicolea maxima
Polychaeta	Terebellida	Terebellidae	Pista pegma
Polychaeta	Terebellida	Terebellidae	Pseudopista rostrata
Polychaeta	Terebellida	Terebellidae	Streblosoma toddae
_			
Bryozoa Gymnolaemata	Cheilostomata	Antroporidae	Akatopora circumsaepta
Gymnolaemata	Cheilostomata	Arachnopusiidae	Arachnopusia unicornis
Gymnolaemata	Cheilostomata	Beaniidae	Beania n. sp. [whitten]
Gymnolaemata	Cheilostomata	Beaniidae	Beania plurispinosa
Gymnolaemata	Cheilostomata	Buffonellodidae	Aimulosia marsupium
Gymnolaemata	Cheilostomata	Celleporidae	Celleporina sinuata
Gymnolaemata	Cheilostomata	Celleporidae	-
•	Cheilostomata	Chaperiidae	Galeopsis porcellanicus Chaperiopsis cervicornis
Gymnolaemata		•	
Gymnolaemata	Cheilostomata	Hippoporidridae	Odontoporella adpressa
Gymnolaemata	Cheilostomata	Hippothoidae Microporollidae	Celleporella tongima
Gymnolaemata	Cheilostomata	Microporellidae	Fenestrulina thyreophora
Gymnolaemata	Cheilostomata	Microporellidae	Microporella speculum
Gymnolaemata	Cheilostomata	Romancheinidae	Escharoides angela
Gymnolaemata	Cheilostomata	Romancheinidae	Exochella conjuncta
Gymnolaemata	Cheilostomata	Smittinidae	Smittina palisada
Gymnolaemata	Cheilostomata	Smittinidae	Smittina torques
Cnidaria			
Hydrozoa	Hydroida	Lafoeidae	Hebellopsis scandens

Table 6:Native species recorded from the Port of Nelson survey.

Phylum, Class	Order	Family	Genus and species
Hydrozoa	Hydroida	Phialellidae	Opercularella humilis
Hydrozoa	Hydroida	Sertulariidae	Parascyphus simplex
Hydrozoa	Hydroida	Syntheciidae	Synthecium elegans
Crustacea			
Cirripedia	Thoracica	Balanidae	Austrominius modestus
Valacostraca	Amphipoda	Aoridae	Haplocheira barbimana
Malacostraca	Amphipoda	Leucothoidae	Leucothoe trailli
Malacostraca	Amphipoda	Lysianassidae	Parawaldeckia vesca
Malacostraca	Anomura	Paguidae	Pagurus traversi
Malacostraca	Anomura	Paguridae	Lophopagurus (L.) thompsoni
Malacostraca	Anomura	Porcellanidae	Petrolisthes elongatus
Malacostraca	Anomura	Porcellanidae	Petrolisthes novaezelandiae
Valacostraca	Brachyura	Cancridae	Cancer novaezelandiae
Malacostraca	Brachyura	Hymenosomatidae	Halicarcinus innominatus
Malacostraca	Brachyura	Hymenosomatidae	Halicarcinus varius
Valacostraca	Brachyura	Hymenosomatidae	Halicarcinus whitei
Malacostraca	Brachyura	Hymenosomatidae	Halimena aoteoroa
Valacostraca	Brachyura	Hymenosomatidae	Neohymenicus pubescens
Valacostraca	Brachyura	Majidae	Notomithrax minor
Valacostraca	Brachyura	Majidae	Notomithrax ursus
Valacostraca	Brachyura	Ocypodidae	Macrophthalmus hirtipes
Valacostraca	Brachyura	Pinnotheridae	Pinnotheres novaezelandiae
Valacostraca	Brachyura	Portunidae	Nectocarcinus antarcticus
Valacostraca	Brachyura	Xanthidae	Pilumnus lumpinus
Valacostraca	Caridea	Crangonidae	Pontophilus hamiltoni
Valacostraca	Caridea	Palemonidae	Palaemon affinis
Valacostraca	Isopoda	Cirolanidae	Natatolana rossi
	loopouu		Watatolaha 1055i
Echinodermata	Familiandata	Asteriidae	
Asteroidea Asteroidea	Forcipulata		Coscinasterias muricata
	Valvatida	Asterinidae	Patiriella regularis
Holothuroidea	Aspidochirotida	Stichopodidae	Stichopus mollis
Mollusca			
Bivalvia	Myoida	Hiatellidae	Hiatella arctica
Bivalvia	Mytiloida	Mytilidae	Modiolarca impacta
Bivalvia	Mytiloida	Mytilidae	Perna canaliculus
Bivalvia	Mytiloida	Mytilidae	Xenostrobus pulex
Bivalvia	Nuculoida	Nuculidae	Nucula hartvigiana
Bivalvia	Ostreoida	Anomiidae	Pododesmus zelandicus
Bivalvia	Ostreoida	Ostreidae	Ostrea chilensis
Bivalvia	Veneroida	Psammobiidae	Soletellina siliquens
Bivalvia	Veneroida	Semelidae	Leptomya retiaria
Bivalvia	Veneroida	Veneridae	Dosinia lambata
Bivalvia	Veneroida	Veneridae	Ruditapes largillierti
Bivalvia	Veneroida	Veneridae	Tawera spissa
Gastropoda	Basommatophora	Siphonariidae	Siphonaria australis
Gastropoda	Cephalaspidea	Philinidae	Philine auriformis
Gastropoda	Littorinimorpha	Calyptraeidae	Sigapatella tenuis
Gastropoda	Littorinimorpha	Turritellidae	Maoricolpus roseus
Gastropoda	Neogastropoda	Buccinidae	Buccinulum vittatum
Gastropoda	Neogastropoda	Muricidae	Xymene plebeius
Gastropoda	Neogastropoda	Muricidae	Xymene pusillus

Phylum, Class	Order	Family	Genus and species
Gastropoda	Nudibranchia	Dorididae	Doriopsis flabellifera
Gastropoda	Systellomatophora	Onchidiidae	Onchidella nigricans
Gastropoda	Vetigastropoda	Trochidae	Trochus tiaratus
Gastropoda	Vetigastropoda	Turbinidae	Turbo smaragdus
Polyplacophora	Acanthochitonina	Acanthochitonidae	Acanthochitona zelandica
Polyplacophora	Ischnochitonina	Chitonidae	Sypharochiton pelliserpentis
Phycophyta			
Rhodophyceae	Ceramiales	Ceramiaceae	Antithamnionella adnata
Rhodophyceae	Ceramiales	Dasyaceae	Heterosiphonia squarrosa
Rhodophyceae	Ceramiales	Delesseriaceae	Myriogramme denticulata
Rhodophyceae	Ceramiales	Rhodomelaceae	Cladhymenia oblongifolia
Ulvophyceae	Ulvales	Ulvaceae	Enteromorpha linza
Ulvophyceae	Ulvales	Ulvaceae	Enteromorpha ramulosa
Porifera			
Calcarea	Leucosolenida	Sycettidae	Sycon pedicellatum
Demospongiae	Haplosclerida	Chalinidae	Haliclona cf. punctata
Demospongiae	Haplosclerida	Chalinidae	Haliclona glabra
Demospongiae	Poecilosclerida	Hymedesmiidae	Phorbas fulva
Demospongiae	Poecilosclerida	Mycalidae	Mycale (Carmia) tasmani
Demospongiae	Poecilosclerida	Tedaniidae	Tedania battershilli
Pyrrophycophyta			
Dinophyceae	Peridiniales	Peridiniaceae	Protoperidinium conicum
Dinophyceae	Peridiniales	Peridiniaceae	Protoperidinium conicum cf. conicoides
Dinophyceae	Peridiniales	Peridiniaceae	Protoperidinium sp.
Dinophyceae	Peridiniales	Peridiniaceae	Scrippsiella trochoidea
Urochordata			
Ascidiacea	Aplousobrancia	Didemnidae	Lissoclinum notti
Ascidiacea	Stolidobranchia	Molgulidae	Molgula mortenseni
Ascidiacea	Stolidobranchia	Pyuridae	Microcosmus australis
Ascidiacea	Stolidobranchia	Pyuridae	Pyura cancellata
Ascidiacea	Stolidobranchia	Pyuridae	Pyura carnea
Ascidiacea	Stolidobranchia	Pyuridae	Pyura rugata
Ascidiacea	Stolidobranchia	Pyuridae	Pyura subuculata
Ascidiacea	Stolidobranchia	Styelidae	Cnemidocarpa bicornuta
Ascidiacea	Stolidobranchia	Styelidae	Cnemidocarpa nisiotus
Vertebrata			
Actinopterygii	Anguilliformes	Anguillidae	Anguilla dieffenbachii
Actinopterygii	Gadiformes	Moridae	Pseudophycis bachus
Actinopterygii	Gasterosteiformes	Syngnathidae	Hippocampus abdominalis
Actinopterygii	Perciformes	Labridae	Notolabrus celidotus
	Perciformes	Trypterigiidae	Grahamina capito
Actinopterygii		riyptorigilado	

Table 7.Cryptogenic marine species recorded from the Port of Nelson survey.
Category 1 cryptogenic species (C1); Category 2 cryptogenic species (C2).
Refer to section 2.8 for definitions.

Phylum, Class	Order	Family	Genus and species	
Bryozoa				
Gymnolaemata	Cheilostomata	Scrupariidae	Scruparia ambigua	C1
Cnidaria				
Hydrozoa	Hydroida	Campanulariidae	Clytia hemisphaerica	C1
Hydrozoa	Hydroida	Plumulariidae	Plumularia setacea	C1
Crustacea				
Malacostraca	Brachyura	Grapsidae	Plagusia chabrus	C1
Mollusca				
Bivalvia	Mytiloida	Mytilidae	Mytilus galloprovincialis	C1
Porifera				
Demospongiae	Halichondrida	Halichondriidae	Halichondria n. sp. 5	C2
Demospongiae	Halichondrida	Halichondriidae	Hymeniacidon perleve	C1
Demospongiae	Haplosclerida	Chalinidae	Haliclona n. sp. 1	C2
Demospongiae	Haplosclerida	Chalinidae	Haliclona n. sp. 7	C2
Urochordata				
Ascidiacea	Aplousobranchia	Didemnidae	Didemnum vexillum	C1
Ascidiacea	Aplousobrancia	Polyclinidae	Aplidium phortax	C1
Ascidiacea	Phlebobranchia	Rhodosomatidae	Corella eumyota	C1
Ascidiacea	Stolidobranchia	Botryllinae	Botrylliodes leachii	C1
Ascidiacea	Stolidobranchia	Styelidae	Asterocarpa cerea	C1
Ascidiacea	Stolidobranchia	Styelidae	Styela plicata	C1

Table 8:Non-indigenous marine species recorded from the Port of Nelson survey.
Likely vectors of introduction are largely derived from Cranfield et al
(1998), where H = Hull fouling and B = Ballast water transport. NIS not
listed in Cranfield et al (1998) or previously encountered by taxonomic
experts in New Zealand waters are marked as New Records (NR). For
these species and others for which information is scarce, we provide dates
of first detection rather than probable dates of introduction.

Phylum, Class	Order	Family	Genus and species	Probable means of introductior	Date of introduction or detection (d)
Annelida					
Polychaeta	Spionida	Spionidae	Polydora hoplura	Н	Unknown ¹
Bryozoa					
Gymnolaemata	Cheilostomata	Bugulidae	Bugula flabellata	Н	Pre-1949
Gymnolaemata	Cheilostomata	Cryptosulidae	Cryptosula pallasiana	н	1890s
Gymnolaemata	Cheilostomata	Electridae	Conopeum seurati	н	Pre-1963
Gymnolaemata	Cheilostomata	Electridae	Electra angulata	н	Unknown ¹
Gymnolaemata	Cheilostomata	Lepraliellidae	Celleporaria nodulosa (NR)	Н	Jan. 2002 ^d
Gymnolaemata	Cheilostomata	Schizoporellidae	Schizoporella errata	н	Pre-1960
Gymnolaemata	Cheilostomata	Watersiporidae	Watersipora subtorquata	H or B	Pre-1982
Gymnolaemata	Ctenostomata	Nolellidae	Anguinella palmata	Н	1960
Cnidaria					
Hydrozoa	Hydroida	Campanulinidae	Lafoeina amirantensis (NR)	H or B	Jan. 2002 ^d
Mollusca					
Bivalvia	Ostreoida	Ostreidae	Crassostrea gigas	Н	1961
Bivalvia	Veneroida	Semelidae	Theora lubrica	В	1971
Urochordata					
Ascidiacea	Aplousobranchia	Cionidae	Ciona intestinalis	Н	Pre-1950
Ascidiacea	Stolidobranchia	Styelidae	Cnemidocarpa sp. (NR)	н	Dec. 2001 ^d

¹ Date of introduction currently unknown but species had been encountered in New Zealand prior to the present survey.

Table 9:Species indeterminata recorded from the Port of Nelson survey. This
group includes: (1) organisms that were damaged or juvenile and lacked
cruical morphological characteristics, and (2) taxa for which there is not
sufficient taxonomic or systematic information available to allow positive
identification to species level.

Phylum, Class	Order	Family	Genus and species
Annelida			
Polychaeta	Phyllodocida	Nereididae	Nereididae indet
Polychaeta	Phyllodocida	Nereididae	Nereis Indet
Polychaeta	Phyllodocida	Nereididae	Perinereis Perinereis-A
Polychaeta	Phyllodocida	Polynoidae	Lepidonotinae Indet
Polychaeta	Sabellida	Sabellidae	Megalomma Megalomma-A
Polychaeta	Spionida	Spionidae	Polydora Indet
Polychaeta	Terebellida	Ampharetidae	Amphicteis Amphicteis-A
Polychaeta	Terebellida	Terebellidae	Lanassa Lanassa-A
Bryozoa			
Gymnolaemata	Cheilostomata	Hippothoidae	Celleporella sp.
Cnidaria		D	
Hydrozoa	Hydroida	Bougainvilliidae	Bougainvillia ?muscus
Hydrozoa	Hydroida	Lafoeidae	Filellum sp. indeterminate
Hydrozoa	Hydroida	Tubulariidae	Ectopleura sp. indeterminate
Crustacea			
Malacostraca	Decapoda	• • • • • •	Shrimp sp.
Malacostraca	Isopoda	Sphaeromatidae	?Cilicaea sp
Malacostraca	Mysida	Mysidae	Heteromysis or Mysidetes sp.
Mollusca			
Gastropoda	Nudibranchia	Dorididae	Jorunna sp.
Phycophyta			
Rhodophyceae	Acrochaetiales	Acrochaetiaceae	Audouinella sp.
Rhodophyceae	Bangiales	Bangiaceae	Bangia sp.
Rhodophyceae	Ceramiales	Ceramiaceae	Callithamnion sp.
Rhodophyceae	Ceramiales	Ceramiaceae	Ceramium sp.
Rhodophyceae	Ceramiales	Ceramiaceae	Griffithsia sp.
Rhodophyceae	Ceramiales	Dasyaceae	Dasya sp.
Rhodophyceae	Ceramiales	Delesseriaceae	Myriogramme sp.
Rhodophyceae	Ceramiales	Delesseriaceae	Schizoseris sp.
Rhodophyceae	Ceramiales	Delesseriaceae	Unidentifiable Delesseriaceae
Rhodophyceae	Ceramiales	Rhodomelaceae	Polysiphonia sp.
Rhodophyceae	Corallinales	Corallinaceae	Non-geniculate coralline
Rhodophyceae	Rhodymeniales	Rhodomeniaceae	Rhodymenia sp.
Rhodophyceae	.		Unidentifiable red
Ulvophyceae	Cladophorales	Cladophoraceae	Cladophora sp.
Ulvophyceae	Ulvales	Ulvaceae	Ulva sp.
Platyhelminthes			
Turbellaria	Polycladida		Indet genus indet sp.
Urochordata			
Ascidiacea	Aplousobranchia	Didemnidae	Didemnum sp.
Thaliacea	Salpida	Salpidae	Salpidae sp

Port of Nelson: baseline survey for non-indigenous marine species • 55

Table 10:Non-indigenous marine organisms recorded from the Port of Nelson
survey and the techniques used to capture each species in the Port. Species
distributions are indicated throughout the port and in other locations
surveyed in this project around New Zealand.

Genus and species	Capture Techniques	Locations detected in Port	Detected in other locations surveyed in ZBS2000_04
Polydora hoplura	Pile scrape	MCGlashen Berth, Fig 16	Dunedin, Picton, Tauranga, Whangarei Harbour, Wellington
Bugula flabellata	Pile scrape	Lay-up Berth, Fig 17	Auckland, Bluff, Dunedin, Lyttelton, Napier, Opua Marina, Picton, Tauranga, Taranaki, Timaru, Whangarei Harbour, Wellington
Cryptosula pallasiana	Pile scrape	Lay-up Berth, Fig 18	Dunedin, Gisborne, Lyttelton, Taranaki, Timaru, Whangarei Harbour, Wellington
Conopeum seurati	Pile scrape	K, Lay-up, Main and MCGlashen Berths, Fig 19	Lyttelton, Whangarei Marina
Electra angulata	Benthic grab, Pile scrape	Main Berth, Fig 20	None
Celleporaria nodulosa	Pile scrape	K Berth, Fig 21	Gisborne
Schizoporella errata	Benthic grab	Main Berth, Fig 22	Gulf Harbour Marina, Whangarei Harbour
Watersipora subtorquata	Pile scrape	K, Lay-up, Main and MCG Berths, Fig 23	Gulf Harbour Marina, Bluff, Dunedin, Gisborne, Lyttelton, Napier, Opua Marina, Picton, Tauranga, Taranaki, Timaru, Whangarei Harbour, Wellington
Anguinella palmata	Pile scrape	MCG Berth, Fig 24	Auckland
Lafoeina amirantensis	Benthic sled	Main Berth, Fig 25	None
Crassostrea gigas	Benthic grab, Pile scrape	K, Lay-up, Main and MCG Berths, Fig 26	Gulf Harbour Marina, Auckland, Dunedin, Opua, Taranaki, Whangarei Harbour
Theora lubrica	Benthic sled	K and MCG Berths, Fig 27	Gulf Harbour Marina, Auckland, Gisborne, Lyttelton, Napier, Opua Marina, Taranaki, Whangarei Harbour, Whangarei Marina, Wellington
Ciona intestinalis	Benthic sled, Pile scrape	Lay-up and MCG Berths, Fig 28	Lyttelton, Napier, Timaru
Cnemidocarpa sp.	Pile scrape	Lay-up and MCG Berths, Fig 29	Gulf Harbour Marina, Auckland, Gisborne, Lyttelton, Picton, Taranaki, Tauranga, Timaru, Wellington

Appendices

Phylum	Class	Specialist	Institution
Annelida	Polychaeta	Geoff Read, Jeff Forman	NIWA Greta Point
Bryozoa	Gymnolaemata	Dennis Gordon	NIWA Greta Point
Chelicerata	Pycnogonida	David Staples	Melbourne Museum, Victoria, Australia
Cnidaria	Anthozoa	Adorian Ardelean	West University of Timisoara, Timisoara, 1900, Romania
Cnidaria	Hydrozoa	Jan Watson	Hydrozoan Research Laboratory, Clifton Springs, Victoria, Australia
Crustacea	Amphipoda	Graham Fenwick	NIWA Christchurch
Crustacea	Cirripedia	Graham Fenwick, Isla Fitridge John Buckeridge ¹	NIWA Christchurch and ¹ Auckland University of Technology
Crustacea	Decapoda	Colin McLay ¹ Graham Fenwick, Nick Gust	¹ University of Canterbury and NIWA Christchurch
Crustacea	Isopoda	Niel Bruce	NIWA Greta Point
Crustacea	Mysidacea	Fukuoka Kouki	National Science Museum, Tokyo
Echinodermata	Asteroidea	Don McKnight	NIWA Greta Point
Echinodermata	Echinoidea	Don McKnight	NIWA Greta Point
Echinodermata	Holothuroidea	Niki Davey	NIWA Nelson
Echinodermata	Ophiuroidea	Don McKnight, Helen Rotman	NIWA Greta Point
Echiura	Echiuroidea	Geoff Read	NIWA Greta Point
Mollusca	Bivalvia. Cephalopoda, Gastropoda, Polyplacophora	Bruce Marshall	Museum of NZ Te Papa Tongarewa
Nemertea	Anopla, Enopla	Geoff Read	NIWA Greta Point
Phycophyta	Phaeophyceae, Rhodophyceae, Ulvophyceae	Wendy Nelson, Kate Neill	NIWA Greta Point
Platyhelminthes	Turbellaria	Sean Handley	NIWA Nelson
Porifera	Demospongiae, Calcarea	Michelle Kelly-Shanks	NIWA Auckland
Priapula	Priapulidae	Geoff Read	NIWA Greta Point
Pyrrophycophyta	Dinophyceae	Hoe Chang, Rob Stewart	NIWA Greta Point
Urochordata	Ascidiacea	Mike Page, Anna Bradley Patricia Kott ¹	NIWA Nelson and ¹ Queensland Museum
Vertebrata	Osteichthyes	Clive Roberts, Andrew Stewart	Museum of NZ Te Papa Tongarewa

Appendix 1: Specialists engaged to identify specimens obtained from the New Zealand Port surveys.

Appendix 2: Generic descriptions of representative grups of the main marine phyla collected during sampling.

Phylum Annelida

Polychaetes: The polychaetes are the marine worms and are closely related to the earthworms and leeches found on land. Polychaetes are widely distributed in the marine environment and are commonly found under stones and rocks, buried in the sediment or attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. All polychaete worms have visible legs or bristles. Many species live in tubes secreted by the body or assembled from debris and sediments, while others are free-living. Depending on species, polychaetes feed by filtering small food particles from the water or by preying upon smaller creatures.

Phylum Bryozoa

Bryozoans: This group of organisms is also referred to as 'moss animals' or 'lace corals'. Bryozoans are sessile and live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. They are all colonial, with individual colonies consisting of hundreds of individual 'zooids'. Bryozoans can have encrusting growth forms that are sheet-like and approximately 1 mm thick, or can form erect or branching structures several centimetres high. Bryozoans feed by filtering small food particles from the water column, and colonies grow by producing additional zooids.

Phylum Chelicerata

Pycnogonids: The pycnogonids, or sea spiders, are a group within the Arthropoda, and closely related to land spiders. They are commonly encountered living among sponges, hydroids and bryozoans on the seafloor. They range in size from a few mm to many cm and superficially resemble spiders found on land.

Phylum Cnidaria

Hydroids: Hydroids can easily be mistaken for erect and branching bryozoans. They are also sessile organisms that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. All hydroids are colonial, with individual colonies consisting of hundreds of individual 'polyps'. Like bryozoans, they feed by filtering small food particles from the water column.

Phylum Crustacea

Crustaceans: The crustaceans represent one of the sea's most diverse groups of organisms, well known examples include shrimps, crabs and lobsters. Most crustaceans are motile (capable of movement) although there are also a variety of sessile species (e.g. barnacles). All crustaceans are protected by an external carapace, and most can be recognised by having two pairs of antennae.

Phylum Echinodermata

Echinoderms: This phylum contains a range of predominantly motile organisms – sea stars, brittle stars, sea urchins, sea cucumbers, sand dollars, feather stars and sea lilies. Echinoderms feed by filtering small food particles from the water column or by extracting food particles from sediment grains or rock surfaces.

Phylum Mollusca

Molluscs: The molluscs are a highly diverse group of marine animals characterised by the presence of an external or internal shell. This phylum includes the bivalves (organisms with hinged shells e.g. mussels, oysters, etc), gastropods (marine snails, e.g. winkles, limpets,

topshells), chitons, sea slugs and sea hares, as well as the cephalopods (squid, cuttlefish and octopus).

Phylum Phycophyta

Algae: These are the marine plants. Several types were encountered during our survey. Large *macroalgae* were sampled that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. These include the green algae (phylum Chlorophyta), red algae (phylum Rhodophyta) and brown algae (phylum Phaeophyta). We also encountered microscopic algal species called *dinoflagellates* (phylum Pyrrophyta), single-celled algae that live in the water column or within the sediments.

Phylum Porifera

Sponges: Sponges are very simple colonial organisms that live attached to submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. They vary greatly in colour and shape, and include sheet-like encrusting forms, branching forms and tubular forms. Sponge surfaces have thousands of small pores to through which water is drawn into the colony, where small food particles are filtered out before the water is again expelled through one or several other holes.

Phylum Pyrrophycophyta

Dinoflagellates: Dinoflagellates are a large group of unicellular algae common in marine plankton. About half of all dinoflagellates are capable of photosynthesis and some are symbionts, living inside organisms such as jellyfish and corals. Some dinoflagellates are phosphorescent and can be responsible for the phosphorescence visible at night in the sea. The phenomenon known as red tide occurs when the rapid reproduction of certain dinoflagellate species results in large brownish red algal blooms. Some dinoflagellates are highly toxic and can kill fish and shellfish, or poison humans that eat these infected organisms.

Phylum Urochordata

Ascidians: This group of organisms is sometimes referred to as 'sea squirts'. Adult ascidians are sessile (permanently attached to the substrate) organisms that live on submerged natural and artificial surfaces including rocks, pilings, ropes and the shells or carapaces of other species. Ascidians can occur as individuals (solitary ascidians) or merged together into colonies (colonial ascidians). They are soft-bodied and have a rubbery or jelly-like outer coating (test). They feed by pumping water into the body through an inhalant siphon. Inside the body, food particles are filtered out of the water, which is then expelled through an exhalant siphon. Ascidians reproduce via swimming larvae (ascidian tadpoles) that retain a notochord, which explains why these animals are included in the phylum Chordata along with vertebrates.

Phylum Vertebrata

Fishes: Fishes are an extremely diverse group of the verterbrates familiar to most people. Approximately 200 families of fish are represented in New Zealand waters ranging from tropical and subtropical groups in the north to subantarctic groups in the south. Fishes can be classified according to their depth preferences. Fish that live on or near the sea floor are considered demersal while those living in the upper water column are termed pelagics.

Appendix 3: Criteria for assigning non-indigenous status to species sampled from the Port of Nelson.

Criteria that apply to each species are indicated by (+). Criteria (C1-C9) were developed by Chapman and Carlton (1994). Here we apply Cranfield et al's (1998) analysis to species previously known from New Zealand waters. For non-indigenous species first detected during the present study, criteria were assigned using advice from the taxonomists that identified them. Refer to footnote for a full description of C1-C9 criteria

Phylum and species	C1	C2	C3	C4	C5	C6	C7	C8	C9
Annelida									
Polydora hoplura			+		+	+	+	+	+
Bryozoa									
Bugula flabellata	+	+	+		+	+	+	+	+
Cryptosula pallasiana	+	+	+		+	+	+	+	+
Conopeum seurati	+		+	+	+	+	+	+	+
Electra angulata	+	+	+		+		+	+	+
Celleporaria nodulosa	+		+		+		+	+	+
Schizoporella errata	+	+	+			+	+	+	+
Watersipora subtorquata	+	+	+		+	+	+	+	+
Anguinella palmata	+	+			+	+	+	+	+
Cnidaria									
Lafoeina amirantensis	+		+		+		+	+	
Mollusca									
Crassostrea gigas	+	+	+			+	+	+	+
Theora lubrica	+	+			+	+	+	+	+
Urochordata									
Ciona intestinalis	+		+		+	+	+	+	+
Cnemidocarpa sp.	+		+		+			+	

Criterion 1: Has the species suddenly appeared locally where it has not been found before?

Criterion 2: Has the species spread subsequently?

Criterion 3: Is the species' distribution associated with human mechanisms of dispersal?

Criterion 4: Is the species associated with, or dependent on, other introduced species?

Criterion 5: Is the species prevalent in, or restricted to, new or artificial environments?

Criterion 6: Is the species' distribution restricted compared to natives?

Criterion 7: Does the species have a disjunct worldwide distribution?

Criterion 8: Are dispersal mechanisms of the species inadequate to reach New Zealand, and is passive dispersal in ocean currents unlikely to bridge ocean gaps to reach New Zealand?

Criterion 9: Is the species isolated from the genetically and morphologically most similar species elsewhere in the world?

Appendix 4. Geographic locations of the sample sites in the port of Nelson

Site	Eastings	Northings	NZ Latitude	NZ Longitude	Survey Method	No. of sample units
K	2533026	5994219	-41.2602	173.2748	BSLD	2
K	2533026	5994219	-41.2602	173.2748	CRBTP	4
K	2533026	5994219	-41.2602	173.2748	FSHTP	4
K	2533026	5994219	-41.2602	173.2748	PSC	13
K	2533026	5994219	-41.2602	173.2748	SHRTP	4
K	2533026	5994219	-41.2602	173.2748	STFTP	4
LAY-UP	2533205	5994474	-41.2579	173.2769	BSLD	2
LAY-UP	2533205	5994474	-41.2579	173.2769	CRBTP	4
LAY-UP	2533205	5994474	-41.2579	173.2769	FSHTP	4
LAY-UP	2533205	5994474	-41.2579	173.2769	PSC	15
LAY-UP	2533205	5994474	-41.2579	173.2769	SHRTP	4
LAY-UP	2533205	5994474	-41.2579	173.2769	STFTP	4
MAIN	2532640	5993980	-41.2623	173.2702	BGRB	2
MAIN	2532640	5993980	-41.2623	173.2702	BSLD	2
MAIN	2532640	5993980	-41.2623	173.2702	CRBTP	4
MAIN	2532640	5993980	-41.2623	173.2702	FSHTP	4
MAIN	2532640	5993980	-41.2623	173.2702	PSC	12
MAIN	2532640	5993980	-41.2623	173.2702	SHRTP	4
MAIN	2532640	5993980	-41.2623	173.2702	STFTP	4
MCG	2532883	5993970	-41.2624	173.2731	BSLD	2
MCG	2532883	5993970	-41.2624	173.2731	CRBTP	4
MCG	2532883	5993970	-41.2624	173.2731	FSHTP	4
MCG	2532883	5993970	-41.2624	173.2731	PSC	15
MCG	2532883	5993970	-41.2624	173.2731	SHRTP	4
MCG	2532883	5993970	-41.2624	173.2731	STFTP	4
site 1	2532892	5994472	-41.2579	173.2732	CYST	2
site 2	2533076	5994349	-41.259	173.2754	CYST	2
site 3	2532105	5994086	-41.2614	173.2638	CYST	2
site 4	2532383	5993678	-41.2651	173.2671	CYST	2

*Survey methods: PSC = pile scrape, BSLD = benthic sled, BGRB = benthic grab, CYST = dinoflagellate cyst core, CRBTP = crab trap, FSHTP = fish trap, STFTP = starfish trap, SHRTP = shrimp trap.

Д 1234 00000	- 0				- c		0 0			 -			0	0		0 - 0 -	1			1				0 - 0 -	000) c		000			0	0,	 	- 0	0 0	0 1	0 0	0		>
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 1 0 0 1 0 0 0			0 0 1 1			0 0 0 1			0 1 0 1				1000			1010			0 0 1 1				1000			1 0 0 0			0 1 0 0	0 0 0 0		0 0 0 - 1 0 - 1 0	- 0 0 - 0 - 0	0 0 0 0					
OUT	0 0	00		1		00	0	00		0	00		0	0	00	00	0	00	00	0 0	00	00	- 0	00	0		00	0		00	1			- 0	0	0		00		0
LAY-UP 3 4 IN 1 3 4 1 2	00	00	00	0	0 -	- 0	0			100	00		0	0	00		0	00	00	0	00		00	00-	1		00	0		00	0			- 0	0	0 0		00	00	> >
2 3 0 0	0 0 0 0			0 0 0			0 0 0			0 0 0				0 0 0			0 0 0		000	0 0 0				0 0 0	0 0 0		- 0				0 0 0				0 0 0					> >
OUT 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0			0 0 0		- 0 0	0 0 0							0 0 0			1 0 0	- 0		1 0 0				0 1 0				1 0 1			000			- 0	0 0 0	1 0 0				
n code K olicate osition IN Status	A SI								zz									z 2																					o c z z	:
	intestinalis sp.	vexillum	phortax	eumyota	leachii mortenseni	subuculata		cancellata	camea rugata	cerea		plouinta	plicata	muricata	regularis	arctica canaliculus		impacta palloprovincialis	co a	gigas	chilensis	peurenatum Sp.	traversi	elongatus	novaezelandiae	Chabrus varius	innominatus	ot.	pubescens whitei		novaezelandiae	lumpinus	amnis modectus		perleve	cf. punctata	glabra n sn 7 (fine lacev 240)		tasmani hattershilli	
Sr Mina Sr			Lissocimum Aplidium phortax		Botrylliodes leachii Moloula mortansani	SU	cosmus au	S. C.		ocarpa ce	ii 4		Id	terias m	a re		id si	E R	smus zel	Crassostrea gigas		hora st	tr		ć		ini ini	aot	9.4	E U	res no	Iun		n. sp. 5 (fingery	cidon perleve	cf.	labra sn 7 (fine lacev	fulva	Mycale (Carmia) tasmani Tedania battershilli	2
Genus Genus <i>Grahamina</i> co	in Sf	Didemnum		atidae <u>Corella</u>	des	Pyura su	Microcosmus	S. C.	Pyura ci Pyura n	Asterocarpa	ii 4	Crieriiuocarpa bi Cnemidocarna sr	Styela	Coscinasterias m	e Patiriella re.	Ci al	Xenostrobus pu	rca imp dai	e Pododesmus zel		0	iceae <i>Cladophora</i> s	Pagurus tr	e c	Petrolisthes	UIS CI	Halicarcinus in	Halimena	duq su:	Notomithrax m	dae Pinnotheres n	Pilumnus lun	a	riidae Halichondria n. sp. 5 (fingery	Hymeniacidon perleve	Haliclona cf.	glabra n sn 7 ffine larev	niidae Phorbas fulva	t P	2000
Family Genus Sr Trypterigiidae <i>Grahamina</i> co	Ciona in Didemnum sp	Didemnidae Didemnum	Lissocimum Aplidium	Rhodosomatidae Corella	Botrylliodes Molaula	Pyuridae Pyura su	Pyuridae Microcosmus au	Pyuridae Pyura că	Pyura ci Pyura n	Styelidae Asterocarpa ce	Cnemidocarpa ni	Styelidae Crieninocarpa pi Styelidae Cnemidocarpa sr	Styelidae Styela pl	a Asteriidae <i>Coscinasterias m</i>	da Asterinidae Pa <i>tiriella re</i>	e niateria al Perna ca	Mytilidae Xenostrobus pu	Modiolarca im Mvtilus ca	Anomiidae Pododesmus zel	Crassostrea	Ostrea CI	Syceritude Sycerit pr Cladophoraceae Cladophora si	Paguidae Pagurus tr	Eupriopagui us (E.) tri Petrolisthes el	Porcellanidae Petrolisthes n	Plagusia Cr Halicarcinus vs	Hymenosomatidae Halicarcinus in	Hymenosomatidae Halimena aot	Neohymenicus pub Halicarcinus wiki	Majidae Notomithrax m	Pinnotheridae Pinnotheres n	rra Xanthidae Pilumnus lun Polomonidae Pilumnus de	Palaemon al Austrominius m	rida Halichondriidae Halichondria n. sp. 5 (fingery	Halichondriidae Hymeniacidon perleve	Chalinidae Haliclona cf.	Haliclona glabra Haliclona n sn 7 (fine larev	a Hymedesmiidae Phorbas fulva	Mycale (Carmia) to Tedania h	

F0000000000000000000000000000000000000	0 0 0 0		0 0 0			000	-00		000 000			000										
2 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												
00000000000000000000000000000000000000	0000																					
IN LP	0000	000	0 - 0	000	000	000	000	00	- 0 0	00	000	000	00	00	0 0	0	0 0	0 -	- 0	0	00	000
00000000 00000000 00000000	0000							00						0 - 1 0	0 - 0 0							00-
2000-000 2000-000 20000000 200000000 200000000																						
	0 - 0 0	0000	000	000		000	000	00		000	00-			0		- 0		00		0		
Berth code K Pile replicate N N N N N N N N N N N N N N N N N	4 4 4 <i>0</i>	ō∢zű	۷ ۹ ۲	c sı	z z C	zzā	ōzz	Z	zīsz	z IS i	ō z z	zz	: IS 2	zz:	zIJ	zū	ō z	zū	5 ∢	z	Z 2	ZZZ
australis vittatum flabellifera nigricans n. sp. [whitten] plurispinosa puurispinosa cervicornis	pallasiana seurati angulata	ap: nodulosa angela	ampigua subtorquata palmata	?muscus hemisphaerica	scandens humilis setacea	simplex elegans	sp. indecerminate barbimana trailli	vesca sp.	rossi sp australiensis	kerguelensis Perinereis-A	indet falcaria amblyocionta	camiguinoides pseudoraminina	Indet	polychromus	comma Indet	aberrans	Megalomma-A cariniferus	hystrix hadat	hoplura	acus	chilensis	iamenata anchylochaetus nuchalis
Siphonaria australis Buccinulum vittatum Doriopsis flabellifera Onchidella n'sp. [whitten] Beania purispinosa Geopsis porcellanicus Chaperiopsis cervicornis	C Q G A	0,5,0,1	Scrupara amogua Watersipora subtorquata Anguinella palmata	5. 4 i	reveriopsis scanderis Opercularella humilis Plumularia setacea	us sim n eleg	ectopieura sp. indeterminate Haplocheira barbimana Leucothoe trailli	Parawaldeckia vesca Shrimp sp.	Natatolana rossi ?Clilicaea sp Dorvillea australiensis	s ke	Nerelatae indet Nereis falcart Perinereis amhlvordonta	i Ü Č		ΞQ.	Lepidastheniella comma Lepidonotinae Indet	al	Megalomma Spirobranchus cariniferus	Galeolaria hystrix Polydoro hydor	Polydora hoplura	e e		boccarula tamenara Timarete anchylochaetus Protocirrineris nuchalis
m vittatr nghcen nghcen pluns, porce sis cervic	ae Cryptosula p Conopeum si Electra a	dae Escharoides a	ocruparia arr Watersipora su Anguinella pa	liidae <i>Bougainvillia ?</i> ? ariidae <i>Clytia</i> h	sc hr se	Parascyphus sim Synthecium eleg	sp. bari trai	ae	na s, rc ai	Neanthes ke Perinereis Pe	e fal	Perinereis Derinereis	Nereis In Eulatio	Lepidonotus p	Polynoidae L <i>epidastneniella comma</i> Polynoidae L <i>epidonotinae Indet</i>	Demonax al	S Ö	Serpulidae Galeolaria hystrix Seionidae Bolvdora hodot		Boccardia a		e Timarete a le Protocirrineris nu
e Siphonaria austra Boricopsis flabel Doricopsis flabel Onchidella nigric. Beania plums, Gaberioosis cervic Craberioosis cervic	Cryptosulidae <i>Cryptosula p</i> Electridae <i>Conopeum</i> s Electridae <i>Electra</i> a Hinonchhidae <i>Celencra</i> a	Lepraliellidae <i>Celleporaria</i> 3 Romancheinidae <i>Escharoides</i> 4 Comancheinidae Scharoides 4	mata Scruparildae <i>Scruparia an</i> mata Watersiporidae <i>Watersipora su</i> imata Nolellidae <i>Anguinella pa</i>	Bougainvillidae <i>Bougainvillia</i> 2 Campanulariidae <i>Civtia</i> h Locariao	nebeilopsis sc Opercularella hu ae Plumularia se	Sertulariidae Parascyphus sim Synthecium elle	idae Eccopieura sp. Haplocheira ban oidae Leucothoe trai	da Lysianassidae l	Natatolana ro cidae ?Cilicaea si Dorvillea au	Nereididae Neanthes kei Nereididae Perinereis Pe	Nereis fal Nereis fal Parinarais an	Nereididae Perinereis ca Nereididae Perinereis ca Nereididae Perinereis ca		Polynoidae <u>Lepidonotus</u> p		Sabellidae Demonax al	Megalomma M Spirobranchus co		Spionidae	Spionidae Boccardia a	Spionidae Boccardia cl Svionidae Boccardia cl	puccaroua ia Timarete ai Protocirrineris nu

Appendix 5a. Results from the diver collections and pile scrapings

	OUT	000	000	0 0 1	000	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0 0	0 0 0	0 0 0	00	0 0 0	0 0 0	0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
	OUT IN	0 1 1 0 0	00001	0 0 0 0 0	0 0 0 0 0	00001	0 0 1 0 0	0 0 0 0 0	0 0 0 0 0	0	10000	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	10000	0 0 0 0 0	10000	0 0 0 0 0	10000	10000
٩U	1	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 0	0 0	0 0	0 0
LAY-	OUT IN	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0	0 0	0 0	0	0	0	0	0 0	0 0	0 0	0	0	0 0	0	0 0	0	0 0	0
	⊤ ∑ S	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	10000	0 0 0 0 0	0 1 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	1 1 0 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
Berth code K	Pile replicate 1 Pile position IN OU	0	0	0	0	0	0	0	0	0 0 N	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		affinis	toddae	rostrata	Lanassa-A	armilla	maxima	pegma	zelandica	pelliserpentis	sp.	adnata	sp.	sp.	sp.	sp.	denticulata	sp.	ds	sp.	sp.	Delesseriaceae	red	indet sp.	sp.	linza	ramulosa
		Flabelligera affinis	Streblosoma toddae		Γ	Nicolea armilla	Nicolea maxima	Pista pegma	Acanthochitona zelandica	Sypharochiton pelliserpentis	Bangia sp.	Antithamnionella adnata	Callithamnion sp.	Ceramium sp.	Griffithsia sp.	Dasya sp.	Myriogramme denticulata	Myriogramme sp.	Schizoseris sp	Polysiphonia sp.	Rhodymenia sp.	Unidentifiable Delesseriaceae	Unidentifiable red	Indet genus indet sp.	Ulva sp.	Enteromorpha linza	Enteromorpha ramulosa
		Flabelligeridae <i>Flabelligera affinis</i>	Terebellidae Streblosoma toddae		Lanassa L	~							0	Ceramium	Ceramiaceae <i>Griffithsia sp.</i>	Dasyaceae Dasya sp.	ae			Rhodomelaceae <i>Polysiphonia sp.</i>	Rhodomeniaceae Rhodymenia sp.	Delesseriaceae Unidentifiable Delesseriaceae	Unidentifiable red	Indet genus indet sp.	Ulvaceae Ulva sp.	Ulvaceae Enteromorpha linza	Ulvaceae Enteromorpha ramulosa
		ď	0,	Pseudopista	Terebellidae Lanassa L	Terebellidae	Terebellidae		Acanthochitonidae	nina Chitonidae	Bangiaceae	Ceramiaceae	0	Ceramiaceae Ceramium	Ceramiaceae	Dasyaceae	Deleseriaceae	Deleseriaceae	Deleseriaceae	Rhodomelaceae				Polycladida indet sp.	Ulvaceae	E	Ulvaceae

1 2 3 4 0 0 0		0				0	0	0 0	0	0	0	0		- 0 - 0	0						- 0	1 0	0 0	0	0	0	0,0			0 1	0 0	0	0															0	000	
2 3 4 OUT	0		0,0			, - , -	0	0 0	0 0	0	0	0	- 0	0 0	0	00						0	0 0	0	000	0	0				0 0	0	0															10	000	
「 1 2 3 4 <u></u> 7 2 3 4 <u></u> 7 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0000	1 0 0	1 0 0	0 1 0							0 0 0	0 0 0	000	0 0 1	000	1000			1 0 0	0 0 0	0 0 0	0 0 0														0 0	0 0 0	0 0 0	
MCG IN 1 0UT 0 0 0 0	0	0	0			~ ~	0	0	0	0	0	0	0	0	0	- (0		⊃ -		- 0	0	0	0	-	0	0				0	0	0	0	⊃ -	- 0									- C			0	0	
2 0 8 0 4 0		0					0	0 0	0 0	0	0	0	0									0	0 0	0	0 0	0					0 0	0	0) (0	000	
3 4 <u>1</u> 2 2 0 1 2 2 0 0		0					1 0	0 0	0 0	0	1	0	0	, 1 0 0	- 0	00					0 0	0	0 0	0	0	0		0 c	- c	 -	1 0	0	0			- 0												0	0	
		0					0	0	0	0	0	1	1	100	0	0 0					0 0	0	0	0	0	0	00			1 0	0	0	0									- 0						0	0	
Berth code MAIN Pile replicate Pile position IN *Status N	2 ∢	SI	5	zC	55	5 5	z	z	z	z	z	z	C1	z	z ·	A o		2 2	z z	zz	zz	z	C1	z	A	z	zū		zz	z	z	C1	Z	zz	zz	zz	2 2	2 2	2 2	zz	z	22	5 5) Z	zz	22	Z	z	z	
Species Apecies	intestinalis	sp.	vexillum	notti	piloi tax ermvota	leachi	mortenseni	subuculata	australis	cancellata	carnea	rugata	cerea	nisiotus	bicornuta	sp.	plicata	muncata	regularis	arcuca canaliculus	pulex	impacta	galloprovincialis	zelandicus	gigas	chilensis	pedicellatum	Sp. travarsi	thomosoni	elongatus	novaezelandiae	chabrus	varius	innominatus	aoteoroa	pubescens	winter	ninition posseseseses	liumainus lumpinus	affinis	modestus	n. sn. 5 (finderv 340-400)) (L	cf. nunctata	ci. puinciata diahra	gianta n. sn. 7 (fine lacev 240)	(com out)	tasmani	battershilli	
Genus Grahamina	Ciona	Didemnum	Didemnum	Anlidium	Corella	Botrvlliodes	Molgula	Pyura	Microcosmus	Pyura	Pyura	Pyura	Asterocarpa	Cnemidocarpa	Cnemidocarpa	Cnemidocarpa	Styela	LOSCINASTERIAS Dotiniollo	Paunena Listells	Perna	Xenostrobus	Modiolarca	Mytilus	Pododesmus	Crassostrea	Ostrea	Sycon	Uladophora Padurus	Lophopadurus (L.)	Petrolisthes	Petrolisthes	Plagusia	Halicarcinus	Halicarcinus	Hallmena	Neonymenicus	No+omithrov	Dinnothoroc	Pilumnus	Palaemon	Austrominius	Halichondria	Hymeniacidon	Haliclona	Haliclona	Haliclona	Phorhas	Mycale (Carmia)	Tedania	
Family Truntarinidae	Cionidae	Didemnidae	Didemnidae	Dolvclinidae	Rhodosomatidae	Botryllinae	Molgulidae	Pyuridae	Pyuridae	Pyuridae	Pyuridae	Pyuridae	Styelidae	Styelidae	Styelidae	Styelidae	Styelidae	Asteriidae Astoriaidae	Asteririuae Lintallidae	Mutilidae	Mytilidae	Mytilidae	Mytilidae	Anomiidae	Ostreidae	Ostreidae	Sycettidae	Uadophoraceae	Paguridae	Porcellanidae	Porcellanidae	Grapsidae	Hymenosomatidae	Hymenosomatidae	Hymenosomatidae	Hymenosomatidae	Moiidoo	Dinno+horidao	Yanthidae	Palemonidae	Ralanidae	Halichondriidae	Halichondriidae	Chalinidae	Chalinidae	Chalinidae	Hvmedesmiidae	Mycalidae	Tedaniidae	
Orders Derriformee	Aplousobranchia	Aplousobranchia	Aplousobranchia	Apiousobranchia Anlousobranchia	Phlahohranchia	Stolidobranchia	Forcipulata Makatida	Windia	Mytiloida	Mytiloida	Mytiloida	Mytiloida	Ostreoida	Ostreoida	Ostreoida	Leucosolenida	Uladophorales Anomira	Anomura	Anomura	Anomura	Brachyura	Brachyura	Brachyura	Bracnyura	Brachyura	Brachyura	Brachviira	Brachviira	Caridea	Thoracica	Halichondrida	Halichondrida	Hanlosclerida	Hanloscierida	Hanlosclerida	Poecilosclerida	Poecilosclerida	Poecilosclerida												

Appendix 5a. Results from the diver collections and pile scrapings

0000000	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000 00000000000		0
0000000 0000-000	000000	0000000	0000-0-000		0
- 00000000 00000000 00000-00		0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0
1 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	00000000000 0000000000	00000000000000000000000000000000000000	0
00000000 00000000 00000000	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000000000 00000000000		0
0000000000000000000000000000000000000	000000000000000000000000000000000000000			00000000000000000000000000000000000000	0
001 000 000 000 000 000 000	0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	00000000000000000000000000000000000000		0 0
code MAIN licate sition IN				zz w w zz zz w z z z w z z w z z z w z z z z z w z z z z w z z z w z z z w z z w z	
P P	6	ata aerica	setacea simplex simplex sp. indeterminate barbimana traili sp. sp.	nsis nsis s-A conta oides amiguina mus mus is haetus	
in si lis					
australis vittatum flabellitum nigricans n. sp. [whitten purcellanicus cervicornis cervicornis	pallasiana seurati angulata sp. nodulosa angela	ambigua subtorquata palmata ?muscus hemisphaerica scandens humilis	setacea simplex elegans parbimana trailli vesca sp. sp.	australiensis kerguuelensis kerguuelensis indet falcaria amblycodonta camiguinoides paevidocamiguin Indet microphylla polychromus comma nindet hopkra hystrix hystrix indet hopkra sous arcus anchylochaetus	nuchalis
Siphonaria austra Buccinulum vittatu Doriopsis flabell Onchidella n. sp. i Beania plurisp Galeopsis porcei Craperiopsis cervic	Cryptosula pallasiar Conopeum seurati Electra angulati Celleporaria podulos Escharoides angela	a s s a lia	Plumularia setacea Plumularia setacea Parascyphus simplex Synthecium elegans Ectopleura sp. inder Hapbocheira barbimat Leucothoe trailli Parawaldeckia vusca Shima rossi Artatolana sp.	<u>e</u>	Protocirrineris nuchalis
Siphonaria Buccinulum Doriopsis Onchidella Beania Galeopsis Chaperiopsis		Scruparia ae Watersipora a Anguinella ae Bougainvillia dae Clyta Hebellopsis Opercularella	ria phus cium cium teira deckia deckia ana a	Dorvillea Dorvillea Perinereis Nereididae Nereididae Perinereis Pe	
Siphonaria Buccinulum Doriopsis Onchidella Beania Galeopsis Chaperiopsis	Jae Cryptosula Conopeum Electra ae Celleporala ae Celleporaria inidae Escharoides	mata Scrupariidae <i>Scruparia</i> mata Watersipondae <i>Watersipora</i> mata Wolellidae <i>Anguinella</i> Bougainvilli Campanulariidae <i>Clytia</i> Lafoeidae <i>Hebellopsis</i> Phialellidae <i>Opercularella</i>	Plumularia Plumularia Synthecium Ectopleura Haplocheira Leucothoe Prawaldeckia Shrimp Matatolana Aae ?Cilicaea	cida Dorvilleidae Dorvillea cida Nereididae Dorvillea Nereididae Nereididae cida Nereididae Perinereis cida Nereididae Nereididae Nereididae Nereididae Nereididae Nereididae Nereididae Nereis cida Nereididae Nereis cida Polynoidae Lepidonotus cida Polynoidae Lepidonotus cida Polynoidae Lepidonotus sabellidae Nereis soponidae Demonax Sepoluidae Boccardia Spionidae Boccardia Spionidae Boccardia Cirratulidae Boccardia	Protocirrineris

*Status: A = non-indigenous (highlighted by shading), C1 = cryptogenic category 1, C2 = cryptogenic category 2, N = native, SI = species indeterminata. See text for details.

Appendix 5a. Results from the diver collections and pile scrapings

	0 0 0	1	0 0	0 0	0 0	0 0	0 0	0 0	1	0 0	1	0 0 0 0	0 0	0	0	1	0 0	0 0	1	0 0	0 0	0	0 0	0 0	0 0	000
	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0 0	0 0 0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	000
-	000	000	0 0 0	000	0 0 0	000	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0
2G 1	0	-	0	0	0	0	0	0	0	0	0	0 0 0	0	0	0	0	0	0	0	0	0	-	0	0	0	0
Ĕ	000	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0 0 0	0 0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0
2	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1000	0 0 0	0 0 0 0
- -	0	0	0	0	0	0	0	0	0	0	0	0 0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
erth code e replicate	ISITION	z	z	SI	z	z	z	z	z	SI	z	SI	SI	SI	SI	z	SI	SI	SI	SI	SI	SI	SI	SI	z	z
	affinis	toddae	rostrata	Lanassa-A	armilla	maxima	pegma	zelandica	pelliserpentis	sp.	adnata	sp.	sp.	sp.	sp.	denticulata	sp.	sp	sp.	sp.	Delesseriaceae	red	indet sp.	sp.	linza	ramulosa
	Flabelligera affinis	Streblosoma toddae	Pseudopista rostrata	Γ	Nicolea armilla	Nicolea maxima	Pista pegma	Acanthochitona zelandica	Sypharochiton pelliserpentis	Bangia sp.	Antithamnionella adnata	Callithamnion sp.	Ceramium sp.	Griffithsia sp.	Dasya sp.	Myriogramme denticulata	Myriogramme sp.	Schizoseris sp	Polysiphonia sp.	Rhodymenia sp.	Unidentifiable Delesseriaceae	Unidentifiable red	Indet genus indet sp.	Ulva sp.	Enteromorpha linza	Enteromorpha ramulosa
	Flabelligeridae <i>Flabelligera affinis</i>	0,	Terebellidae <i>Pseudopista rostrata</i>	Γ	-	Terebellidae Nicolea maxima		Acanthochitonidae Acanthochitona zelandica	Chitonidae Sypharochiton pelliserpentis	Bangiaceae Bangia sp.	e	0	Ceramiaceae Ceramium sp.	Ceramiaceae <i>Griffithsia sp.</i>	Dasyaceae Dasya sp.	Deleseriaceae Myriogramme denticulata	Deleseriaceae Myriogramme sp.	Deleseriaceae <i>Schizoseris sp</i>	Rhodomelaceae Polysiphonia sp.	Rhodomeniaceae Rhodymenia sp.	Delesseriaceae Unidentifiable Delesseriaceae	Unidentifiable red	Indet genus indet sp.	Ulvaceae Ulva sp.	T	Ulvaceae Enteromorpha ramulosa
	ł	0,	F	Lanassa L	Terebellidae	Terebellidae		Acanthochitonidae		F	s Ceramiaceae	Ceramiaceae	Ceramiaceae	0		Deleseriaceae	Deleseriaceae	Deleseriaceae	Rhodomelaceae	R	Delesseriaceae L	Unidentifiable red	Polycladida indet genus indet sp.	Ulvaceae	Ulvaceae	Ulvaceae

Appendix 5b. Results from the benthic grab samples.

	1 2	1 0	0 1	1 0	1 0	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1	0 1
Berth code MAIN	*Status	A	Z	z	z	z	z	A	Z	Z	z	A	Z	z	z	SI
	Species	gigas	traversi	hirtipes	tenuis	circumsaepta	marsupium	angulata	adpressa	thyreophora	speculum	errata	lamelliformis	petersenae	pallida	Amphicteis-A
	Genus	Crassos trea	Pagurus	Macrophthalmus	Sigapatella	Akatopora	Aimulosia	Electra	Odontoporella	Fenestrulina	Microporella	Schizoporella	Glycera	Owenia	Euchone	Amphicteis
	Family	Ostreidae	Paguidae	Ocypodidae	Calyptraeidae	Antroporidae	Buffonellodidae	Electridae	Hippoporidridae	Microporellidae	Microporellidae	Schizoporellidae	Glyceridae	Oweniidae	Sabellidae	Ampharetidae
	Order	Ostreoida	Anomura	Brachyura	Littorinimorpha	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Phyllodocida	Sabellida	Sabellida	Terebellida
	Class	Bivalvia	Crustacea	Crustacea	Gastropoda	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Polychaeta	Polychaeta	Polychaeta	Polychaeta

Appendix 5c. Results from the benthic sled samples.

MCG	- 0		0	000	0					00	0	0	000	000	0	000	000	1	000	000	000	000	000	000	0 1	000	000	000	000	000	000	000	000	000	000		0						0	0	00	0,0	- , - ,	- c) O
		- 0	0	000	0				- 0	00	0	0	1	0	1	000	1 0	000	0	1	0	000	000	0	0	000	0	000	0	1 0	1 0	0	0	000	000	0	0			0	- 0	 	1	1	0 0				 			> 0 > 0
LAY-UP 1 M/	- c		0	1 0	11	- 0			0,		1 0	1 0	1 0	1 1	1 0	1 0	000	0 1	1 0	0 0	0 0	0 0	1 0	0 0	1 1	1 0	1 0	1 1	1 0	0 0	0 0	1 0	00	1 0	1 0	1 0	1	- 1	0 0	0 0		0	0 0	0	00	0,	- 0	0 0				- 1 - 0
, ∠ '	- 0		0 1	0 0	0 0					00	0	0 0	0 0	000	1 0	000	000	1 1	0 0	000	0 0	1 0	0 0	0 0	1 0	0 0	1 0	000	0 0	0 0	0 0	0 0	0 0	0 0	000	0 0	0 0	00				0	0 0	0	00	0,0	— (— ,	- 0				> 0 > 0
Berth code	N NI	∠⊲	SI S	z	z	z	z <	∢ :	z	Z	Z	z	z	z	z	z	z	z	z	z	C	z	z	z	z	z	z	z	z	z	z	z	z	z	z	C	Z	z	z	A	N 2	Z	Z	Z	SI	2	z	zz	z	zz	zŪ	SI S
	species	uapiro intestinalis	sp.	muricata	regularis	hartvigiana	suiquens	IUDRICA	retiaria	lambata	largillierti	spissa	traversi	thompsoni	varius	minor	ursus	hirtipes	hamiltoni	affinis	perleve	auriformis	tenuis	roseus	plebeius	pusillus	maculata	tiaratus	circumsaepta	n. sp. [whitten]	plurispinosa	sinuata	adpressa	tongima	conjuncta	ambigua	palisada	torques	mollis	amirantensis	sp. indeterminate	scandens	simplex	elegans	sp.	sp.	Verrill	laevis	squartosa	denticulata	corallina	red
	Grahamina	Giona	Didemnum	Coscinasterias	Patiriella	Nucula	Soletellina	Ineora	Leptomya	Dosinia	Ruditapes	Tawera	Pagurus	Lophopagurus (L.)	Halicarcinus	Notomithrax	Notomithrax	Macrophthalmus	Pontophilus	Palaemon	Hymeniacidon	Philine	Sigapatella	Maoricolpus	Xymene	Xymene	Pleurobranchaea	Trochus	Akatopora	Beania	Beania	Celleporina	Odont oporella	Celleporella	Exochella	Scruparia	Smittina	Smittina	Stichopus	Latoeina	Filellum	Hebellopsis	Parascyphus	Synthecium	Shrimp	Heteromysis or Mysidetes	Aglaophamus	Labiosthenolepis	nererosipriorila	Myriogramme Cladhymania	Viauriyirenia Mon-raeniculate	Unidentifiable
	Travatorialidaa	Cionidae	Didemnidae	Asteriidae	Asterinidae	Nuculidae	rsammobildae	Semelidae	Semelidae	Veneridae	Veneridae	Veneridae	Paguidae	Paguridae	Hymenosomatidae	Majidae	Majidae	Ocypodidae	Crangonidae	Palemonidae	Halichondriidae	Philinidae	Calyptraeidae	Turritellidae	Muricidae	Muricidae	Pleurobranchidae	Trochidae	Antroporidae	Beaniidae	Beaniidae	Celleporidae	Hippoporidridae	Hippothoidae	Romancheinidae	Scrupariidae	Smittinidae	Smittinidae	Stichopodidae	Campanulinidae	Latoeidae	Latoeidae	Sertulariidae	Syntheciidae	:	Mysidae	Nephtyldae	Sigalionidae	Dasyaceae	Dhodomelaceae	Corallinareae	
	Doroiformoc	Aplousobranchia	Aplousobranchia	Forcipulata	Valvatida	Nuculoida	Venerolda	venerolda	Veneroida	Veneroida	Veneroida	Veneroida	Anomura	Anomura	Brachyura	Brachyura	Brachyura	Brachyura	Caridea	Caridea	Halichondrida	Cephalaspidea	Littorinimorpha	Littorinimorpha	Neogastropoda	Neogastropoda	Notaspidea	Vetigastropoda	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Cheilostomata	Aspidochirotida	Hydroida	Hydroida	Hydroida	Hydroida	Hydroida	Decapoda	Mysida	Phyllodocida	Phyllodocida	Ceramiales	Ceramiales	Corallinales	
	A atimontonyaii	Actinopter ygir Ascidiacea	Ascidiacea	Asteroidea	Asteroidea	Bivalvia	BIValVia Di	BIVAIVIA	Bivalvia	Bivalvia	Bivalvia	Bivalvia	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Crustacea	Demospongiae	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gastropoda	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Gymnolaemata	Holothuroidea	Hydrozoa	Hydrozoa	Hydrozoa	Hydrozoa	Hydrozoa	Malacostraca	Malacostraca	Polycnaeta	Polychaeta	kriouopriyceae	Phodophyceae	Phodonhyraaa	Rhodophyceae

Appendix 5d. Results from the dinoflagellate cyst core samples.

site 4	1 2	1	000	000	0 0
site 3 sit	1 2	000	1 0	1 0	0 0
e 2 site	1 2	000	000	000	0 0
e 1 site	1 2	1 0	0 0	000	1 0
Berth code site	*Status	z	z	z	z
	Species	sp.	conicum	cf. conicoides	trochoidea
	Genus	Protoperidinium	Protoperidinium	Protoperidinium conicum	Scrippsiella
	Family	Peridiniaceae	Peridiniaceae	Peridiniaceae	Peridiniaceae
	Order	Peridiniales	Peridiniales	Peridiniales	Peridiniales
	Class	Dinophyceae	Dinophyceae	Dinophyceae	Dinophyceae

Appendix 5e. Results from the fish trap samples.

	2	1 2	0	0	0	0	0	000	0	0	0	1 0	1	0	0	0
MCG	-	1 2	0	0	0	1	1	0	000	1	1	0	1	0	0	0
Σ	2	1 2	000	000	1 0	1 0	000	000	1 0	000	000	000	000	000	1 0	1 0
Z	-	1 2	1 0	1 0	1 0	000	000	000	1 0	000	000	000	000	000	000	000
MA		2	0	0	-	0	0	000	0 0		0	0 0	0	0	0	0
	1	121	000	0 0	1 1 1	0 0	000	0	0 0			0		-		0 0
LAY-UP																
	2	8 3 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0	0 0 0	0 1	0	0 0 0	0	0	0 0 0	0 0 0
¥	-		0	0	0	0	0		0	0					0	0
Berth code	Line No.	*Status	z	z	z	z	z	C1	z	z	z	z	z	z	SI	z
		Species	dieffenbachii	bachus	celidotus	capito	latus	eumyota	muricata	regularis	minor	hirtipes	affinis	mollis	sp.	denticulata
		Genus	Anguilla	Pseudophycis	Notolabrus	Grahamina	Peltorhamphus	Corella	Coscinasterias	Patiriella	Notomithrax	Macrophthalmus	Palaemon	Stichopus	Audouinella	Myriogramme
		Family	Anguillidae	Moridae	Labridae	Trypterigiidae	Pleuronectidae	Rhodosomatidae	Asteriidae	Asterinidae	Majidae	Ocypodidae	Palemonidae	Stichopodidae	Acrochaetiaceae	Deleseriaceae
		Order	Anguilliformes	Gadiformes	Perciformes	Perciformes	Pleuronectiformes	Phlebobranchia	Forcipulata	Valvatida	Brachyura	Brachyura	Caridea	Aspidochirotida	Acrochaetiales	Ceramiales
		Class	Actinopterygii	Actinopterygii	Actinopterygii	Actinopterygii	Actinopterygii	Ascidiacea	Asteroidea	Asteroidea	Crustacea	Crustacea	Crustacea	Holothuroidea	Rhodophyceae	Rhodophyceae

Appendix 5f. Results from the crab trap samples.

DO	1 2	1212	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
MIN MIN	1 2	1212	0 0 0 0	1 0 1 1	0 0 1 0	1 0 1 1	0 0 0 0	1000	1 0 1 0	0 0 0 1	0 0 0 0
JP M,	2	1212	1000	0 0 1 0	0 0 0 0	0101	0 0 0 1	0 0 0 0	0 0 0 0	0 1 0 0	0 0 0 0
K LAY-UP		1234	0 0 0 0	1000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 1 0
Berth code	Line no.	*Status	z	z	z	z	z	z	z	z	z
		Species	dieffenbachii	celidotus	muricata	regularis	traversi	novaezelandiae	minor	maculata	flabellifera
		Genus	Anguilla	Notolabrus	Coscinasterias	Patiriella	Pagurus	Cancer	Notomithrax	Pleurobranchaea	Doriopsis
		Family	Anguillidae	Labridae	Asteriidae	Asterinidae	Paguidae	Cancridae	Majidae	Pleurobranchidae	Dorididae
		Order	Anguilliformes	Perciformes	Forcipulata	Valvatida	Anomura	Brachyura	Brachyura	Notaspidea	Nudibranchia
		Class	Actinopterygii	Actinopterygii	Asteroidea	Asteroidea	Crustacea	Crustacea	Crustacea	Gastropoda	Gastropoda

		2	0	0	0	0	0	0	0	0	0	0
	N	2 1	0	0	0	0	0	0	0	0	0	0
g	-	-	0	0	0	0	0	0	0	0	0	0
ž		2	0	0	0	0	0	0	0	0	0	-
	2	2	0	0	0	0	0	0	0	0 0 0	0	0
dAIN	-	-	0	0	0	0	0	0	0	0	0	0
_	2	1 2	0	0	0	1	0	0	0 0	0 0	0 0	000
		1 2	1	0 0	0 0	1	0	0 0	0	1	0	000
AY-UP												
ב		4	0	0	0	0	0	0	0	0	0	0
		2	0	0	0	0 1	0 0 0 0	10	0	0	0	0
ode K	Line No.	us 1	0	0	0	0	0	0	0	0	0	0
Site co	Line	*Stati	z	z	z	z	z	z	z	SI	z	z
			alis						SUS		sn	
		ecies	abdominalis	lidotus	uricata	gularis	ctica	nor	tarctic		naragd	silic
		Sp	ab	CG	ш	lei	arc	m	an	ds	SIT	ш
			sndu	IS	erias			rax	cinus			
		sn	lippocampus	colabru	scinast	iriella	tella	comith	stocar	unna	oq.	sndoys
		Ger	Hip	Not	COS	Pat	Hia	Not	Nec	Jor	Tur	Stic
			idae		~	ae	0		e		d)	lidae
		yli	yngnathidae	ridae	eriidae	erinida	:ellidae	idae	tunida	ididae	binidae	hopoc
		Farr	Syn	Lab	Ast	Ast	Hiat	Maji	Por	Dor	Turl	Stic
			nes								a	cu cu
			asterosteiforme	nes	ita		Myoida	a	e.	ichia	ropod	irotid
		der	steros	rciforn	rcipula	Ivatida	/oida	achyur	achyur	dibran	tigast	pidoch
		0	Ö									
			Actinopterygii	terygii	dea	dea		ea	ea	oda	oda	roidea
		lass	ctinop	ctinop	steroid	steroic	ivalvia	rustac	rustac	astrop	astrop	olothu
		U	4	٩	4	4	B	Ö	Ö	Ö	Ű	Ĩ

Appendix 5h. Results from the shrimp trap samples.

Addendum

After completing these reports we were advised of changes in the identification of one species. The ascidian *Cnemidocarpa sp.* refered to in this report as a new introduction to New Zealand has been revised to *Cnemidocarpa nisiotus* (status: native).