What happens when you measure CO$_2$ five different ways on a single aircraft: Intercomparison results from the HIPPO project

Britton Stephens, Andrew Watt, Steve Shertz (NCAR); Jonathan Bent, Ralph Keeling (SIO);
Bruce Daube, Eric Kort, Rodrigo Jiménez, Jasna Pittman, Greg Santoni, Steve Wofsy (Harvard);
Fred Moore, Ben Miller, and Colm Sweeney (NOAA)
• Pls: Harvard, NCAR, Scripps, NOAA
• Global and seasonal survey of CO$_2$, O$_2$, CH$_4$, CO, N$_2$O, H$_2$, SF$_6$, COS, CFCs, HCFCs, O$_3$, H$_2$O, CO$_2$ isotopes, Ar, black carbon, and hydrocarbons (over 80 species).
• NSF / NCAR Gulfstream V
• Five 3-week campaigns over 3 years, across Pacific between 87 N and 67 S
• Continuous profiling from surface to 10 km, and to 15 km twice per flight
• hippo.ucar.edu, www.eol.ucar.edu/hippo, hippo.ornl.gov
Five independent CO₂ measurements:

- Harvard *in situ* Quantum Cascade Laser Spectrometer (*QCLS*): high precision (0.02 ppm 1-sigma / 1-Hz)
- Harvard *in situ* OMS (Observations Middle Stratosphere): highly modified LiCor 6251, long history of balloon and aircraft work (0.1 ppm 1-sigma / 1-Hz)
- NCAR *in situ* Airborne O₂ Instrument (*AO2*): LiCor 840 sensor for O₂ dilution correction, low precision but rigorously calibrated (1.0 ppm 1-sigma / 1-Hz)
- NOAA Whole Air Sampler (*NWAS*): modified NOAA Portable Flask Packages with moderate drying, 24 flasks per flight analyzed in Boulder, CO
- NCAR/Scripps *MEDUSA* flask sampler: Active flow and pressure control with cryogenic drying, 32 flasks per flight analyzed in La Jolla, CA

All with expected compatibility of 0.2 ppm or better
NCAR Airborne Oxygen Instrument (AO2)

- Vacuum ultraviolet absorption technique for O_2
- Li-840 for CO_2 (dilution correction)
- Active pressure and flow control to 10^{-6}
- 5-second 1-sigma imprecision of ± 2 per meg O_2 / ± 0.5 ppm CO_2
- HS, LS, WT, LT, and LP cylinders
The airborne measuring environment is very demanding:

- Small cylinders
- Cabin leaks
- Inlets
Things we did before HIPPO1:

- Extensive leak tests from inlet through entire system
- Wetted materials tests
- Drying system tests
- Inlet system pressure tests
- START-08 / pre-HIPPO campaign
 - AO2-QCLS-MED comparisons
 - Target tank analysis
 - Pitch maneuvers and speed runs
 - Acceleration tests
- AO2 and inlet moved to aft top from forward bottom

Routine procedures

- Breath tests
- Filter replacement
HIPPO1 Median Offsets

- AO2-MED looked good on all flights
- QCLS-OMS-NWAS looked good on research flights 1-6
- Harvard and NOAA vs. NCAR and Scripps = -0.3 ppm (but NWAS expected to be low)
- Something mysterious happened between RF06 and RF07 in Christchurch...
Positive CO$_2$ offsets positively dependent on altitude (system leak to cabin would have opposite effect):

Things we did before HIPPO2:

- HIMIL vent tubes installed
- Drying and system checks for NWAS
- More leak tests
- More materials tests
- Cylinder gas through inlet system
HIPPO2 Median Offsets

<table>
<thead>
<tr>
<th>AO2 Δ CO₂</th>
<th>OMS Δ CO₂</th>
<th>QCLS Δ CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF01</td>
<td>RF02</td>
<td>RF03</td>
</tr>
<tr>
<td>RF04</td>
<td>RF05</td>
<td>RF06</td>
</tr>
<tr>
<td>RF07</td>
<td>RF08</td>
<td>RF09</td>
</tr>
<tr>
<td>RF10</td>
<td>RF11</td>
<td></td>
</tr>
</tbody>
</table>

- QCLS and OMS problems fixed and QCLS-OMS-MED-NWAS looked good with one exception
- AO2 offsets larger and variable

Slide 10
Evidence for both altitude (+) and time-in-flight (-) dependent AO2 CO$_2$ offsets:

Things we did before HIPPO3:

- More leak tests and more cylinder gas through inlet system tests
- Inlet system humidity and pressure tests
- Fridge trap in-line
- Replaced electro-polished SS inlet tubing
- Inlet purge system installed
HIPPO3 Median Offsets

- AO2 offsets even larger and more variable
- QCLS-MED-NWAS looks good but OMS more variable
Things we did before HIPPO4:

• More extensive leak tests
• More inlet humidity and pressure tests
• Fridge trap testing and then bypassed
• Laboratory cylinder stability tests
• Replaced all 1/8" stainless tubing with electro-polished “Sulfinert”
• More materials tests
• Replaced inlet tube

During HIPPO4:

• Pitch maneuvers
• Cabin pressure tests
• Cabin CO₂ measurement (900 ppm → 0.1% = 0.5 ppm)
HIPPO4 Median Offsets

Preliminary Data

- AO2 offsets started out good but degraded half way through mission
- QCLS-OMS looks good but QCLS and OMS appear ~ 0.2 ppm low relative to flasks
Things we did before HIPPO5:
• More extensive leak tests, including with dry ice on fittings
• Cylinder gas through inlet with dry ice on fittings
• More inlet humidity and pressure tests
• Replaced inlet tube
• Replace ferrules inside HIMIL
• Installed “ultra-torr” fitting on O₃ inlet
• Replaced inlet purge gas with sub-ambient
• 1/16” nickel dip tubes in cylinders

During HIPPO5:
• Yaw maneuvers
• Cylinder gas in inlet purge for entire profile
• HIMIL pressure measurements
• HIMIL CO₂ measurements
• HIMIL suction test
• Inlet temperature measurements
• QCLS-AO2 inlet comparison
HIPPO5 Median Offsets

Preliminary Data

- Again AO2 offsets initially improved, but then much worse than previous
- QCLS-OMS looks good
- NWAS had positive and variable offsets from in situ sensors
Things we did after HIPPO5:

- Cylinder stability tests
- Extensive leak checks on HIMIL
- Wet and dry HIMIL surface effect tests

Next steps:

- Further data analysis
- Flow modeling
- IDEAS-5 cabin leak tests
Conclusions

• Aircraft CO$_2$ measurements are challenging and require significant attention to potential sources of bias
• Recommend dedicated inlets as far outboard and forward as possible
• The only way to assess compatibility is to have multiple measurements
• QCLS looks good with a compatibility of ~ 0.2 ppm, but small altitude and time-in-flight difference offsets apparent
• Recommended CO2X product will be QCLS with some HIPPO1 flights excluded, and calibration periods gap filled by adjusted OMS
• AO2 CO$_2$ data is sufficient for O$_2$ dilution correction but we’d very much like to understand cause of offsets
• All hypotheses for AO2 offsets are both supported and unsupported by various tests, suggesting more than one cause likely and a potential role for yet unrecognized effects. . . . “back to the drawing board”
START-08 / pre-HIPPO Mean Offsets

START08 Median +/- 1-sigma Differences
AO2 Δ CO₂

QCLS Δ CO₂