Overview of comparisons of non-CO$_2$ trace gas measurements between AGAGE and NOAA at common sites

1Centre for Australian Weather & Climate Research/CSIRO Marine & Atmospheric Research, Aspendale, Victoria, Australia
2NOAA Earth System Research Laboratory, Boulder, Colorado, USA
3Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
4School of Chemistry, University of Bristol, Bristol, UK
5Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, Massachusetts, USA
Overview

This presentation will focus on comparisons between AGAGE in situ and NOAA flask or in situ data at five common sites.

Awareness in this community of non-CO$_2$ comparison activities carried out as part of the Advanced Global Atmospheric Gases Experiment (AGAGE) program in collaboration with NOAA & other laboratories.

Outline:
- Why do comparisons?
- Participants/species/sites
- Comparison techniques/outputs
- Results
Why undertake comparisons of independent measurements?

- gives us the ability to report relationships between different calibration scales in publications or web pages;
- allows reliable integration of atmospheric data from independent laboratories and/or measurement techniques;
- becomes a powerful tool in the early identification of problems that may have gone undiagnosed for longer;
- provides a stringent quality control test of individual laboratories experimental methods and internal calibration schemes;
- enables us to compare measurements from different instruments and/or measurement techniques;
- gives you an idea of the overall uncertainty estimate on the datasets when merging data;
- WMO recommendations!
Participants in trace gas comparisons to AGAGE

AGAGE (GC-ECD/FID/MRD, GCMS) – AGAGE team, 5 sites, > 34 species

NOAA/ESRL/GMD CCGG flask (GC-FID/ECD) - Ed Dlugokencky, 5 sites, 3 species
NOAA/ESRL/GMD HATS flask (GCMS) - Steve Montzka, 4 sites, up to 27 species
NOAA/ESRL/GMD HATS flask (GC-ECD) - Jim Butler/David Nance, 4 sites, up to 8 species
NOAA/ESRL/GMD HATS CATS in situ (GC-ECD) - Geoff Dutton, 1 site (Samoa), 11 species

Uni. of Heidelberg flask (GC-ECD) – Ingeborg Levin, 1 site (Cape Grim), 1 species
CSIRO flask (GC-FID/ECD/MRD) – Steele/Langenfelds/Krummel, 1 site (Cape Grim), 4 species

NIES flask (GCMS) – Yoko Yokouchi, 1 site (Cape Grim), 12 species
UEA flask (GCMS) – David Oram, 1 site (Cape Grim), 24 species
SIO flask – Ben Miller/Martin Vollmer, 1 site (Cape Grim), 5 species – ceased
Several other flask measurement programs at Cape Grim

** A lot of data and different data formats!**
Comparisons performed approx every 6 months, results made available to all participants, copies archived and form part of the metadata.
Some species measured on multiple instruments by NOAA &/or AGAGE
NOAA species compared to AGAGE in situ records

30+ species in total:

- CH$_4$, N$_2$O, SF$_6$
- CFC-11, CFC-12, CFC-13, CFC-113, CFC-115
- HCFC-22, HCFC-141b, HCFC-142b
- HFC-23, HFC-125, HFC-134a, HFC-143a, HFC-152a
- H-1211, H-1301, H-2402
- CH$_3$CCl$_3$, CCl$_4$, CCl$_2$CCl$_2$
- CH$_3$Cl, CHCl$_3$, CH$_3$Br, CH$_2$Cl$_2$, CH$_3$I, CHBr$_3$, CH$_2$Br$_2$
- C$_6$H$_6$, OCS
Comparisons

• Controlled by input files – 24 input fields
 - Including data sources; species; smoothing/clipping parameters; begin/end times; match time window etc.
• Matching performed by taking flask sampling time and looking for nearest in situ data point within a specified time window
• Full output produces 10 panels:
 - Time series of all data; time series of matched data
 - 1:1 plot; time series of concentration difference
 - conc diff vs flask conc; conc diff vs in situ conc
 - Time series of % conc diff; % conc diff vs flask conc
 - conc diff vs matched time diff; conc diff vs abs(matched time diff)
• 3-panel ‘quick-look’ plots
• ASCII data files of matched data points produced

• Summary plots and statistics for a particular species
• Code written in IDL; needs overhaul of the code
AGAGE GC–FID in situ versus NOAA GC–FID flask: CH₄

Average diff: 0.38±1.23 ppb, 0.02±0.07 %
Av diff 2 yrs: 0.84±1.09 ppb, 0.05±0.06 %

ΔCH₄ (NOAA GC–FID–AGAGE GCMD) (ppb)

Scales: TU & NOAA–2004
AGAGE GC–ECD in situ versus NOAA GC–ECD flask: CFC–12

Average diff: -1.53 ± 0.47 ppt, $-0.28 \pm 0.09\%$
Av diff 2 yrs: -1.76 ± 0.37 ppt, $-0.33 \pm 0.07\%$

ΔCFC–12 (NOAA ECD–AGAGE GCMD) (ppt)

<table>
<thead>
<tr>
<th>Station</th>
<th>n</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>cgo</td>
<td>587</td>
<td>Nov 1994</td>
<td>Mar 2011</td>
</tr>
<tr>
<td>smo</td>
<td>610</td>
<td>Aug 1996</td>
<td>Mar 2011</td>
</tr>
<tr>
<td>thd</td>
<td>357</td>
<td>Mar 2002</td>
<td>Mar 2011</td>
</tr>
</tbody>
</table>

Scales: SIO–05 & NOAA–2008
AGAGE GC–ECD in situ versus NOAA GC–ECD flask: CFC–11

Average diff: 2.11±0.53 ppt, 0.84±0.20 %
Av diff 2 yrs: 0.73±0.18 ppt, 0.30±0.08 %

ΔCFC–11 (NOAA ECD–AGAGE GCMD) (ppt)

Scales: SIO–05 & NOAA–1992

cgo
n=584
Nov 1994
Mar 2011

smo
n=628
Aug 1996
Mar 2011

thd
n=355
Mar 2002
Mar 2011

mhd
n=185
Nov 1998
Mar 2011
Results: Average differences table – CH$_4$, N$_2$O, SF$_6$

<table>
<thead>
<tr>
<th>Species Method</th>
<th>Scales</th>
<th>Av conc diff last 2 years (NOAA-AGAGE)</th>
<th>Av % diff last 2 years IHALACE (NOAA/AGAGE)</th>
<th>Comparison period; n sites</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_4$ N: GC-FID A: GC-FID</td>
<td>NOAA-2004 Tohoku Uni</td>
<td>0.4±1.2 ppb 0.8±1.1 ppb</td>
<td>0.02±0.07% 0.05±0.06%</td>
<td>Aug 1993 to Apr 2011 5</td>
<td>Excellent agreement</td>
</tr>
<tr>
<td>N$_2$O N: GC-ECD A: GC-ECD</td>
<td>NOAA-2006 SIO-98</td>
<td>-0.20±0.16 ppb 0.07±0.15 ppb</td>
<td>-0.06±0.05% 0.02±0.05%</td>
<td>Aug 1993 to Apr 2011 5</td>
<td>Small trend with time</td>
</tr>
<tr>
<td>SF$_6$ N-CCGG: GC-ECD A: GC-MS</td>
<td>NOAA-2006 SIO-05</td>
<td>0.05±0.02 ppt 0.05±0.02 ppt</td>
<td>0.8±0.4% 0.8±0.4%</td>
<td>Nov 2003 to Apr 2011 5</td>
<td>Good agreement – small offset</td>
</tr>
<tr>
<td>SF$_6$ N-HATS: GC-ECD A: GC-MS</td>
<td>NOAA-2006 SIO-05</td>
<td>0.04±0.02 ppt 0.04±0.02 ppt</td>
<td>0.6±0.4% 0.5±0.3%</td>
<td>Nov 2003 to Apr 2011 4</td>
<td>Good agreement – small offset</td>
</tr>
</tbody>
</table>
Results: Average differences table – CFCs

<table>
<thead>
<tr>
<th>Species</th>
<th>Scales</th>
<th>Av conc diff last 2 years</th>
<th>Av % diff last 2 years</th>
<th>Comparison period; n sites</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFC-11</td>
<td>NOAA-1992 SIO-95</td>
<td>2.1±0.5 ppt 0.7±0.2 ppt</td>
<td>0.8±0.2 % 0.3±0.1 % 0.6±0.2 %</td>
<td>Nov 1994 to Mar 2011 4</td>
<td>Trends down at all sites</td>
</tr>
<tr>
<td>CFC-12</td>
<td>NOAA-2008 SIO-05</td>
<td>1.5±0.5 ppt 1.8±0.4 ppt</td>
<td>-0.28±0.09 % -0.33±0.07 % -0.22±0.02 %</td>
<td>Nov 1994 to Mar 2011 4</td>
<td>Constant offset</td>
</tr>
<tr>
<td>CFC-113</td>
<td>NOAA-2003 SIO-05</td>
<td>1.5±0.2 ppt 1.1±0.2 ppt</td>
<td>1.9±0.2 % 1.5±0.2 % 2.8±0.2 %</td>
<td>Jun 1995 to Mar 2011 4</td>
<td>Offset with small trend down with time</td>
</tr>
<tr>
<td>CFC-113</td>
<td>NOAA-2003 “Montzka” SIO-05</td>
<td>0.03±0.2 ppt 0.1±0.1 ppt</td>
<td>0.04±0.3 % 0.1±0.2 % 1.1±0.3 %</td>
<td>Sep 1993 to Apr 2011 4</td>
<td>Overall good agreement</td>
</tr>
</tbody>
</table>
Results: Average differences table – HCFCs

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Scales</th>
<th>Av conc diff last 2 years (NOAA-AGAGE)</th>
<th>Av % diff last 2 years (\text{IHALACE} (\text{NOAA/AGAGE}))</th>
<th>Comparison period; n sites</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCFC-22</td>
<td>N: GC-MS A: GC-MS</td>
<td>NOAA-2006 SIO-05</td>
<td>-1.1±0.6 ppt -2.3±0.5 ppt</td>
<td>-0.6±0.4 % -1.1±0.2 % 0.7±0.2 %</td>
<td>Nov 2003 to Mar 2011 4</td>
<td>Step change ~2008 at all sites.</td>
</tr>
<tr>
<td>HCFC-141b</td>
<td>N: GC-MS A: GC-MS</td>
<td>NOAA-1994 SIO-05</td>
<td>-0.2±0.1 ppt -0.15±0.08 ppt</td>
<td>-1.1±0.6 % -0.8±0.4 % -1.2±0.1 %</td>
<td>Nov 2003 to Apr 2011 4</td>
<td>Small offset</td>
</tr>
<tr>
<td>HCFC-142b</td>
<td>N: GC-MS A: GC-MS</td>
<td>NOAA-1994 SIO-05</td>
<td>-0.5±0.1 ppt -0.5±0.1 ppt</td>
<td>-2.8±0.5 % -2.5±0.5 % -3.3±0.3 %</td>
<td>Nov 2003 to Apr 2011 4</td>
<td>Offset</td>
</tr>
</tbody>
</table>
Results: Average differences table – HFCs

<table>
<thead>
<tr>
<th>Species</th>
<th>Method</th>
<th>Scales</th>
<th>Av conc diff last 2 years (NOAA-AGAGE)</th>
<th>Av % diff last 2 years (NOAA/AGAGE)</th>
<th>Comparison period; n sites</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>HFC-125</td>
<td></td>
<td>NOAA UB-98</td>
<td>0.14±0.05 ppt 0.15±0.05 ppt</td>
<td>2.4±0.7 % 2.5±0.8 %</td>
<td>Jan 2007 to Apr 2009 3</td>
<td>Offset</td>
</tr>
<tr>
<td></td>
<td>N: GC-MS A: GC-MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFC-134a</td>
<td></td>
<td>NOAA-1995 SIO-05</td>
<td>0.0±0.2 ppt -0.1±0.2 ppt</td>
<td>0.0±0.5 % -0.2±0.3 %</td>
<td>Nov 2003 to Apr 2011 4</td>
<td>Good agreement</td>
</tr>
<tr>
<td></td>
<td>N: GC-MS A: GC-MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HFC-152a</td>
<td></td>
<td>NOAA-2004 SIO-05</td>
<td>0.0±0.1 ppt 0.0±0.1 ppt</td>
<td>-0.5±2.4 % -0.3±1.4 %</td>
<td>Nov 2003 to Apr 2011 4</td>
<td>Good agreement</td>
</tr>
<tr>
<td></td>
<td>N: GC-MS A: GC-MS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results: Average differences table – Halons

<table>
<thead>
<tr>
<th>Species Method</th>
<th>Scales NOAA AGAGE</th>
<th>Av conc diff last 2 years (NOAA-AGAGE)</th>
<th>Av % diff last 2 years IHALACE (NOAA/AGAGE)</th>
<th>Comparison period; n sites</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1211 NOA-Montzka SIO-05</td>
<td>NOAA-2006 SIO-05</td>
<td>-0.23±0.02 ppt -0.24±0.02 ppt</td>
<td>-5.3±0.6 % -5.7±0.4 % -4.4±0.8 %</td>
<td>Nov 2003 to Oct 2010 4</td>
<td>Offset</td>
</tr>
<tr>
<td>H-1301 NOA-Montzka NOAA-1992-p</td>
<td>NOAA-1992-Montzka NOAA-1992-p</td>
<td>0.00±0.01 ppt 0.00±0.01 ppt</td>
<td>0.1±1.2 % 0.6±1.1 %</td>
<td>Nov 2003 to Oct 2010 4</td>
<td>Excellent agreement</td>
</tr>
<tr>
<td>H-2402 NOA-Montzka SIO-05</td>
<td>NOAA-2006 SIO-05</td>
<td>-0.12±0.04 ppt -0.13±0.04 ppt</td>
<td>-4.0±1.1 % -4.2±1.2 %</td>
<td>Mar 2004 to Feb 2008 2</td>
<td>Offset</td>
</tr>
</tbody>
</table>

Note:
- **N:** GC-MS
- **A:** GC-MS
- **Av % diff last 2 years IHALACE (NOAA/AGAGE)**
- **Comparison period; n sites**
- **Comments**
Conclusions and future work

• **Is this a useful exercise?** … Yes
 • Helped identify problems/issues in measurements from both networks
 • Factors used to merge datasets for modelling/inversion studies
 • Advice to people on how to convert between scales

• **Future work**
 • Rewrite code to make more modular and ‘clean-up’
 • Further automation
 • Produce HTML summary table and ‘drill-down’ links – make available on a web page
 • Ongoing activity and development
Thank You

Acknowledgements

All station personnel involved with the collection/filling of flasks and maintenance of *in situ* programs

Participants in the comparison exercise, especially the NOAA colleagues who contribute the bulk of the flask data

The AGAGE team