Constructing the Brazilian Greenhouse Gas Measurement network

Luciana V. Gatti1, Alexandre Martinewski1, John B. Miller2, Emanuel Gloor3, Luana S. Basso1, Lucas G. Domingues1, Caio S. C. Correia1, V. F. Borges1, M. H. Santos1, H.R. Rocha4, Marcos H. Costa5, Ed Dlugokencky2, A. Crotwell2, Kirk W Thoning2, Pieter Tans2

1 IPEN/CQMA/LQA (Nuclear and Energy Research Institute), Sao Paulo, SP, Brazil
2 NOAA/ESRL/GMD (Global Monitoring Division), Boulder, Colorado, US
3 University of Leeds, School of Geography, UK
4 IAG/USP Instituto Astronomico e Geofisico, Sao Paulo, Brazil
5 MCT - Ministry of Science and Technology – Climate Global Change
50% Global Tropical Forest
~120Pg above ground biomass
Amazon river discharge ~20% of
Global fresh water input to ocean
~20% Global biodiversity
2000 – Started Vertical Profiles
2004 – 2009 GHG analysis at IPEN (Funded by NASA – Ecology)
2009-2013 – Funded by FAPESP
2006 IPEN/NOAA/INMET started GHG flasks measures weekly at Arembepe GAW Global station – Closed Jan 2010 by INMET
2010 – Started biweekly Vertical Profiles at: RBA, TAB and ALF - Coast flasks samples Salinopolis and Natal
Sampling with Aircraft Vertical Profiles in Amazon Basin
Flask sampling in surface in Brazilian coast sites
CH$_4$ Vertical Profiles
CH$_4$ concentration
\[F_{\text{gás}} = \frac{\int_{z=0}^{4\text{km}} [(C_{\text{gás}})_{\text{SITE}} - (C_{\text{gás}})_{bg}] dz}{t} \]
Determining background: \(\Delta F_{\text{gas}} = \frac{\int_{z=0}^{4km} [(C_{\text{gas}})_{\text{SITE}} - (C_{\text{gas}})_{\text{bg}}]dz}{t} \)

Determining background: \(\text{SF}_6 \) as transport tracer

![Map of CO2 mixing ratio (ppm) from 2000 to 2009 with ASC, RPB, SAN, and FTL stations marked.]

![Graph showing CO2 mixing ratio (ppm) from 2000 to 2009 with ASC, RPB, SAN, and FTL stations marked.]

![Inset graph showing SF6 mixing ratio from 2000 to 2009 with This study and Fortaleza marked.]
\[F_{g \alpha s} = \frac{\int_{z=0}^{4km} \left[(C_{g \alpha s})_{SITE} - (C_{g \alpha s})_{bg} \right] \, \text{d}l}{t} \]
Back trajectories that arrives in the aircraft sites 0.5; 2 and 4km
Annual mean 2010 Carbon Flux

ALF 0.05 gC/m².day
SAN 0.14 gC/m².day
RBA 0.00 gC/m².day
TAB -0.07 gC/m².day

Carbon Flux (gC/m².day)

Month

0 1 2 3 4 5 6 7 8 9 10 11 12

ALF SAN RBA TAB
Constructing a Brazil Network in Climate Change Observation System

- Vertical Profiles
- CO₂, CH₄, N₂O, CO and SF₆
Constructing a Brazil Network in Climate Change Observation System

- Towers

CO₂ flux tower
Eddy covariance
- Create a protocol for tower measures with automatic calibrations

- Central Laboratory Facilities (LQA/IPEN) for calibrate all standards used in GHG measures

- Comparison program with towers using flasks
Thank you

NOAA HYSPLIT MODEL
Backward trajectories ending at 1600 UTC 21 Aug 09
GDAS Meteorological Data

Source ★ at 2.86 S 54.95 W

NOAA/ESRL/GMD
NASA
WMO
NERC
FAPESP
MCT/BRAZIL GOV.