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Abstract. The study of personal UV exposure and vitamin 
D production using the Allen dosimeter badges required 
complete data series for all participants, but this was 
rarely obtained for the 8 or 10 weeks participation. 
Instead, a range of problems led to gaps in the data that 
had to be filled. The process required several techniques 
including heuristic search algorithms, statistical data 
processing, and supervised and unsupervised machine 
learning. The three steps in the analysis were: 1) Find and 
remove false and unreliable measurements; 2) Interpolate 
available data across areas where measurements were 
missing; 3) Reduce the data to a usable and presentable 
format. Ultimately, each participant’s data were reduced 
to 1680 hourly values of average UV, which could then be 
combined with thrice daily records of clothing worn, daily 
dietary intake, and subsequent serum 25OHD. 

Badge data series 
The New Zealand electronic dosimeter badges are 

described in the paper by Allen (2010). In the New 
Zealand UV-vitamin D study in 2008 and 2009, the 
badges were worn by 517 participants for 8 or 10 weeks, 
and set to record every 8 seconds from 06:00 to 22:00. To 
quantify cumulative UV radiation scaled by skin exposed, 
the study required complete time series. Instead, a range 
of badge or operator errors interrupted the individual data 
series for hours, days, or even whole weeks. Even where 
data were apparently recorded, there are instances where 
they are clearly erroneous. Some are much larger than 
possible for the time of day, supposedly start at the wrong 
time, or are repeats of earlier data. This could happen 
because a badge failed to restart, or the data marker that 
separates new and old data in memory was missing. Static 
electricity, and poor or bounced battery connections, could 
also cause data gaps. All of these factors have been 
considered in updating the badge design (Sherman 2010), 
but for this study data correction was required.  

 
Figure 1. Detecting spikes (green) and repeats in data; 
first occurrences shown in red, repeats in purple. 

All of the corrections described here were automated to 
work from the raw data, which are unchanged. The first 
step was to correct any time errors, and remove any time-
data pairs that did not correspond to a real measurement. 
Interviewers’ records of visit times and badge issuance 
were used to resolve instances of concurrent data where a 
new badge was started for a participant before the old one 
was stopped. 

Heuristic search techniques were used to find repeats, 
and unsupervised learning algorithms used to scan for 
areas of malfunction and baseline elevation for each 
badge. The example in Fig 1 shows spikes and repeated 
data; the intervals shown in purple are recorded as 
containing invalid data for that badge and period. Where 
an elevated baseline was detected, it was subtracted and 
the data retained. 

Participant time series 
From data flagged or corrected as above, hourly values 

for each participant were calculated. For estimated data to 
fill gaps, a weighted sum of approximating variables was 
used. Predictor variables for any hour of data included 
average data values for the person for that hour of the day, 
average data values for all participants at that hour of the 
year, average values for that participant during that hour 
of the week, and average values for the participant over 
the nearest week in which they had recorded 
measurements. A single-layer perceptron was utilised to 
optimise weights, by training on predicting measured 
values. Evolution of the coefficients is shown in Fig 2. 

 
Figure 2. Evolution and stabilisation of the perceptron 
coefficients with iteration of the training algorithm. 

In this instance, weights also gave an indication of the 
effectiveness of each predictor, though there was 
collinearity from using both mean and median as separate 
predictors. The best predictors, consistently across sites 
and years though coefficients differed, were the mean 
value for that time of day over the nearest week in which 
the participant had recorded measurements (9.1 in Fig 2) 
and the mean for all participants at that time and day (7.3). 
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Figure 3. Example of gap filling for one participant. 

Figure 3 illustrates how the gap filling completes the 
hourly data series, though this was an 8-week participant 
so the last two weeks were not required. 

All error detection and correction was automated, as 
above, for objectivity and repeatability. On the other hand, 
recognising the types of data error and confirming their 
resolution required human intervention to review both 
individual readings and general trends. Figure 4 illustrates 
one such review, with data from Dunedin to November 
2008. The hourly data have been combined into three 
periods per day (before 11:00, 11:00-16:00, after 16:00) 
corresponding to the participants’ daily logs of clothing 
worn. In downstream analyses these two datasets are 
combined to scale the UV received by amount of skin 
exposed, as the integral of this product is used as a 
predictor of vitamin D production. 

In Fig 4, participants appear as horizontal bars, with 

coloured bands showing the average UVI experienced 
over the period. Typically there will be one coloured band 
per day. The daily total exposure averaged across all 
participants is shown in red, expressed as Standard 
Erythemal Doses (SEDs, 1 UVI for 1 hour gives 0.9 SED) 
on the scale at right. Grey dashed vertical lines are 
Mondays, highlighting a weekly periodicity for many 
participants, consistent with spending more time outside 
in the weekend, especially in the warmer months. Average 
UV exposures dropped markedly in winter, as expected. 

Figure 4 also illustrates other aspects of the study. The 
upper envelope of the data shows the rate of recruitment 
of participants, which achieved good uniformity in 
Dunedin for 2008. The same plot for Auckland (not 
shown) highlights a slowdown in late winter until more 
dosimeter badges were made, and the subsequent busy 
period in spring to achieve target numbers. In 2009, both 
Dunedin and Auckland achieved uniform recruitment. 

Other measures of the UV exposure have also been 
derived from the badge data. From a knowledge of the UV 
irradiance spectrum for given solar zenith angle and ozone 
amount, the nearly erythemal response of the badges can 
be converted to CIE or other vitamin D action spectra. 
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Figure 4. Data for Dunedin 2008, with participants as horizontal bars in three periods per day, gaps for missing data, 
and colours for average UVI. Average received SEDs for the day are in red, and grey dashed vertical lines are Mondays. 
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