Method development for PILS-IC for large volume environmental chamber experiments on amine-based aerosol

Donald Cameron1
Stephen White2, Ian Jamie1, Dennys Angove2

1 Faculty of Science, CBMS, Macquarie University, Sydney
2 CSIRO Energy & Technology, PO Box 52, North Ryde, NSW 1670, Australia
Overview

1. Project Aims
2. Previous work
3. What is a PILS
4. 3rd Generation Environmental Chamber
5. Expectations & Challenges
Project Aims

- To understand nucleation process of aerosol generated by the amines
 - Monoethanolamine (MEA)
 - Piperazine (PZ or PIPA)
 - 2-amino-2-methyl-1-propanol (AMP)

- To investigate aerosol production from species as a function of amine and NO\textsubscript{x} loading
- To determine the composition of generated aerosol in terms of organic and inorganic fractions
Previous Work

Loy Yang PCC Plant:

- Hydrocarbon + NOx
- Hydrocarbon + NOx + MEA

- Comparative study
 - Hydrocarbons + NOx
 - Hydrocarbons + NOx + MEA

- Results used in ambient modelling (CMAR)

3D dispersion modelling (Latrobe)

Azzi M. et al. (2014). CSIRO, Australia
PILS

- Particle-into-Liquid Sampler

- Developed by Rodney J. Weber *et al.* late 90’s
- Based on particle growth devices
- Designed for rapid measurement
PILS

- Improvements published by Douglas A. Orsini et al. in 2003
- Commercially obtained from Metrohm AG

Orsini et al (2003) Atmos. Env. 37, 1243-1259
Selected Field Studies:

<table>
<thead>
<tr>
<th>Author</th>
<th>Detection</th>
<th>Time-resolution</th>
<th>Time/season</th>
<th>Campaign, Place</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weber et al. (2007)</td>
<td>WSOC</td>
<td>3 s</td>
<td>Many flights + ground based measurement campaign during summer 2004</td>
<td>Atlanta, GA + flights above over a large area of northern Georgia</td>
</tr>
<tr>
<td>De Gouw et al. (2008)</td>
<td>WSOC</td>
<td>1 min</td>
<td>1 month cruise + 18 flights during a month in summer</td>
<td>NEAQS-ITCT 2004, 18 research aircraft (WP-3D) flights above eastern US and the NOAA research ship cruising at Massachusetts and New Hampshire coast</td>
</tr>
<tr>
<td>Hennigan et al. (2008a, b)</td>
<td>WSOC</td>
<td>6 min</td>
<td>4 months</td>
<td>Atlanta</td>
</tr>
<tr>
<td>Hennigan et al. (2008c)</td>
<td>WSOC, IC</td>
<td></td>
<td>24 days</td>
<td>MILAGRO field campaign in Mexico City</td>
</tr>
<tr>
<td>Saarikoski et al. (2008)</td>
<td>IC</td>
<td>15 min</td>
<td>1 year (2006–2007)</td>
<td>SMEAR III station Helsinki, Finland</td>
</tr>
<tr>
<td>Miyazaki et al. (2009)</td>
<td>WSOC</td>
<td>6 min</td>
<td>26 days</td>
<td>Guangzhou, China</td>
</tr>
<tr>
<td>Miyazaki et al. (2009)</td>
<td>WSOC</td>
<td>6 min</td>
<td></td>
<td>PRIDE-PRD campaign, rural site Pearl River Delta region, China</td>
</tr>
<tr>
<td>Partshitshev et al. (2009)</td>
<td>GC-MS</td>
<td>2 h</td>
<td>6 days</td>
<td>SMEAR II station at Hyytiälä, Finland</td>
</tr>
</tbody>
</table>

Table adapted from Timonen et al. (2010). Atmos. Meas. Tech. 3, 1063-1074

Chamber Studies:

- Murphy et al. 2007 (offline IC; TMA, MA, TEA, DEA, EA, MEA)
- Clark et al. 2013 (online ToF; α-pinene, isoprene)
- Tang et al. 2013/2014 (online IC; TMA, DEA, BA / TMA, BA)
3rd gen. Environmental Chamber

- 24.7 m3 (1.98m x 5.07m x 2.46 m)
 Chamber lined with FEP Teflon
- Flushed with clean air
- UV lights mounted at each end
 (40 BLB, 40 unfiltered blacklights)
- Monitoring devices: O_3, NO, NO$_2$, NO$_y$
 FTIR, SMPS, PILS-IC
Currently undergoing characterisation:
- Propene/NO\textsubscript{x} experiments
- NO\textsubscript{2} photolysis & UV spectra

Particle Formation

<table>
<thead>
<tr>
<th>Time / min</th>
<th>Exp2</th>
<th>Exp3</th>
<th>Exp4</th>
<th>Exp5</th>
<th>Exp6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>100.00</td>
<td>200.00</td>
<td>300.00</td>
<td>400.00</td>
</tr>
<tr>
<td>100.00</td>
<td>400.00</td>
<td>500.00</td>
<td>600.00</td>
<td>700.00</td>
<td>800.00</td>
</tr>
<tr>
<td>200.00</td>
<td>1000.00</td>
<td>2000.00</td>
<td>3000.00</td>
<td>4000.00</td>
<td>5000.00</td>
</tr>
<tr>
<td>300.00</td>
<td>6000.00</td>
<td>7000.00</td>
<td>8000.00</td>
<td>9000.00</td>
<td>10000.00</td>
</tr>
</tbody>
</table>

Statistical Analysis

<table>
<thead>
<tr>
<th>Rate / min-1</th>
<th>NEC</th>
<th>BLB</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 STDEV</td>
<td>0.248</td>
<td>0.361</td>
<td>0.540</td>
</tr>
<tr>
<td></td>
<td>0.018</td>
<td>0.025</td>
<td>0.036</td>
</tr>
</tbody>
</table>
Online PILS: Expectations

- Characterisation of organic & inorganic fractions
- Shed light on observed bimodal behaviour of amines in SMPS (indirect)

![Particle Distribution Exp 723](image1)

![Particle distribution amine experiments](image2)
Online PILS: Work to date

- First calibrations with inorganic ions
Online PILS: Challenges

- First to be used with amines in Australia
- Development of methodology that maximises sensitivity
- Major challenge: large sample volume (16.7 lpm)
 - Possible approaches:
 - Top up chamber
 - Split sampling
 - Aliquot sampling
Summary

- PILS is not “brand new”, but new to CSIRO Environmental Chamber
- New 3rd generation chamber under commission
- Anticipated outcomes of current research:
 - PILS data will allow us to identify and quantify the inorganic and organic fractions of generated aerosol.
 - Information elucidates on the importance of these fractions in particle formation
 - Better understand amine-aerosol nucleation process(es)
Acknowledgements

Previous work by CSIRO:
Dennys Angove
Stephen J. White
Michael Patterson
Robert Hynes
Peter Nancarrow
Brendan Halliburton
Steve Lavrencic
Owen Farrell
Peter Nelson
Roger Bolling
Merched Azzi
Anne Tibbett
Ian Campbell
Robert Heywood
Chris Fookes
John Carras
Kathryn Emmerson
Martin Cope
Melita Keywood
Ian Galbally
Sarah Lawson

MQ Uni:
Ian Jamie

References:

