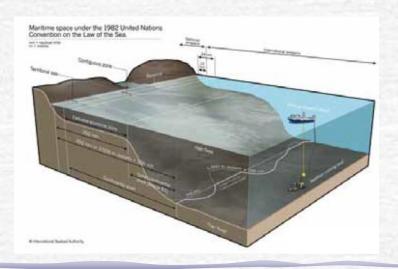
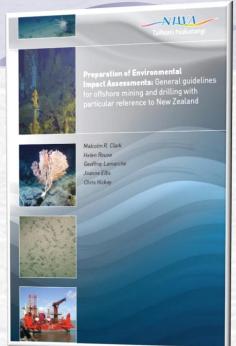

Ecotoxicity and Biogeochemical assessment of deep-sea mine sediments

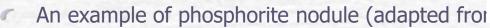


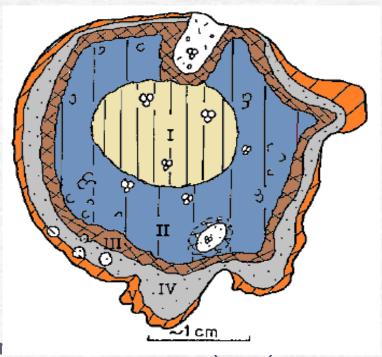

Guidance documents

Toxicity and chemistry

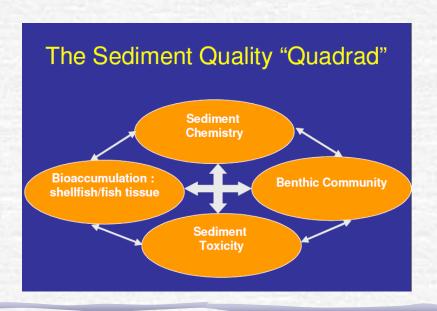
- Standard elutriate procedures
- Laboratory based
- Initial screening assessments

Too simplistic...





Background: Phosphorites

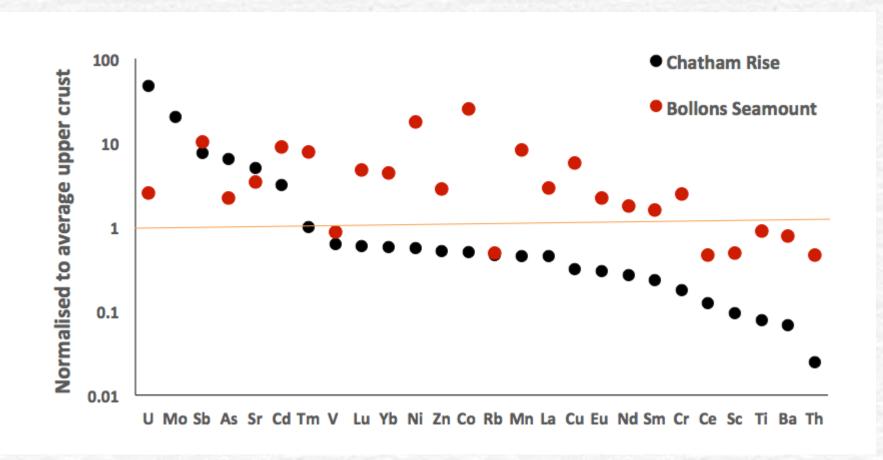


- I: Weakly phosphatised nanno chalk core;
- II: Outer phosphatised chalk zone;
- III: Goethite zone;,
- IV: Collophane zone (amorphous phosphatic apatities);
- V: glauconite outer rim.

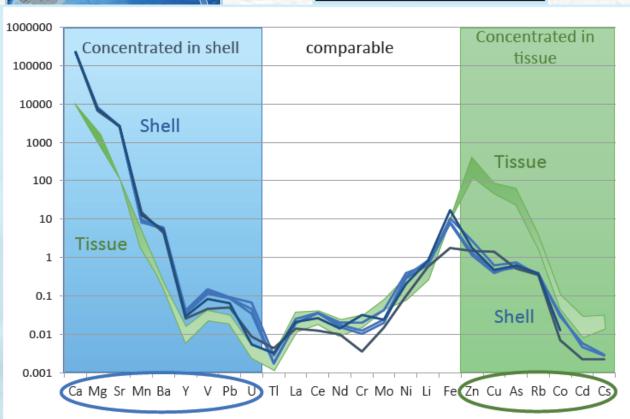
Conceptual

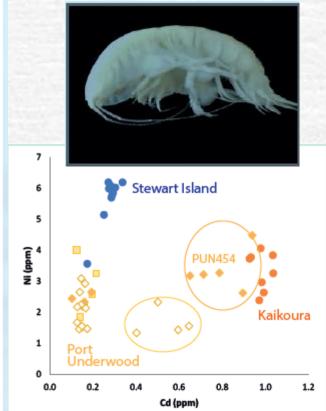
- Contaminants of concern
 - Trace metals (including rare earths) and other elements (???) primarily dissolved fractions for toxicity and bioaccumulation
 - Sulphide, ammonia
 - pH
 - Modifiers (pH, dissolved organic carbon, iron/manganese, calcium, sediment)
- Dilution and dispersion (near-field, far-field)
- Elutriate and sediment toxicity
- Food-chain bioaccumulation
- Bioturbation/recovery processes
- Standard assessment methods
- Practical approaches

Objectives


- To develop standardised approaches for chemical and ecotoxic characterisation of deep sea mining sediment
- 2. To field test assessment tools for potential deep sea mining activity
- To establish critical effects thresholds for deep sea sponges and corals for suspended sediments (another project)
- 4. To provide updated guidelines for deep sea management

Background: Phosphorites


Biomonitoring: Crustacea



Decapods - Munida gracilis

Amphipod - Ampelisca chiltoni

Background: Sediments

Trace element abundances in sediments collected from the Chatham Rise (2012 survey).

Notes: All units mg/kg dry wt.; <2 mm fraction. All results are mean values \pm standard error. * n = 19. *** n = 7. **** n = 5. # Kingett Mitchell (2005).

	Non-chalk					Pegasus Bay	
	All samples*	Surface**	Sub- surface***	Chalk****	Phosphorite	Canterbury#	
Arsenic	6.1 ± 0.6	5.9 ± 0.7	6.5 ± 1.1	<4	5-79	4.9 (3.7-6.6)	
Cadmium	0.22 ± 0.02	0.18 ± 0.01	0.30 ± 0.03	0.29 ± 0.05	0.2	0.021 (0.02-0.04)	
Chromium	39 ± 3	41 ± 3	36 ± 6	20 ± 4	0-30	11.7 (10.2-13.9	
Copper	6.2 ± 0.2	6.2 ± 0.2	6.2 ± 0.5	4.0 ± 0.8	5-85	4.2 (3.4-6.5)	
Lead	3.4 ± 0.2	3.6 ± 0.2	3.2 ± 0.4	2.3 ± 0.4	5-24	9.0 (7.5-12.9)	
Manganese	83 ± 2	82 ± 3	84 ± 4	81 ± 10	-	-	
Molybdenum	0.46 ± 0.05	0.40 ± 0.05	0.57 ± 0.11	0.36 ± 0.07	3-17	-	
Mercury	0.062 ± 0.004	0.066 ± 0.005	0.054 ± 0.005	0.038 ± 0.008		0.046 (0.04-0.07	
Nickel	20 ± 0.4	19 ± 0.5	21 ± 1	18 ± 1	6-59	9.0 (7.8-10.1)	
Strontium	630 ± 40	570 ± 30	720 ± 80	$1,100 \pm 50$	1,200-1,800	-	
Uranium	8.6 ± 1.2	8.6 ± 1.5	8.6 ± 2.1	9.9 ± 1.8	20-480	-	
Zinc	27 ± 0.8	27 ± 1	26 ± 2	17 ± 3	5-80	34.4 (28.2-39.1)	

Laboratory: Elutriation and Toxicity

Elutriate testing:

- Standardised test (EPA, ASTM)
- Developed to assess point of dredging/far-field/ confined disposal scenarios
- Defines key factors including sediment/water ratio, dark, temperature

- Sediment to water ratio of 1:4
- Standard 30 minute agitation (tumbling)
- Extended 24 hour agitation
- Seawater (offshore)
- No sieving (retaining phosphorite nodules)
- Room temperature (~20°C)
- Elutriates checked for pH, DO

Chatham Rise Elutriates

30 minute elutriate

24 hour elutriate

Chatham Rise Elutriate Results

- Results compared with ANZECC (2000) guidelines for **99% species protection** and the relative increase in background concentrations.
- The elutriate **exceeded guidelines** for dissolved **copper** and **total ammoniacal-N**. For the 30 min elutriate the maximum dilution to meet the copper guideline was 22x and ammoniacal-N 1.4x (vanadium maximally 64% of the guideline value).

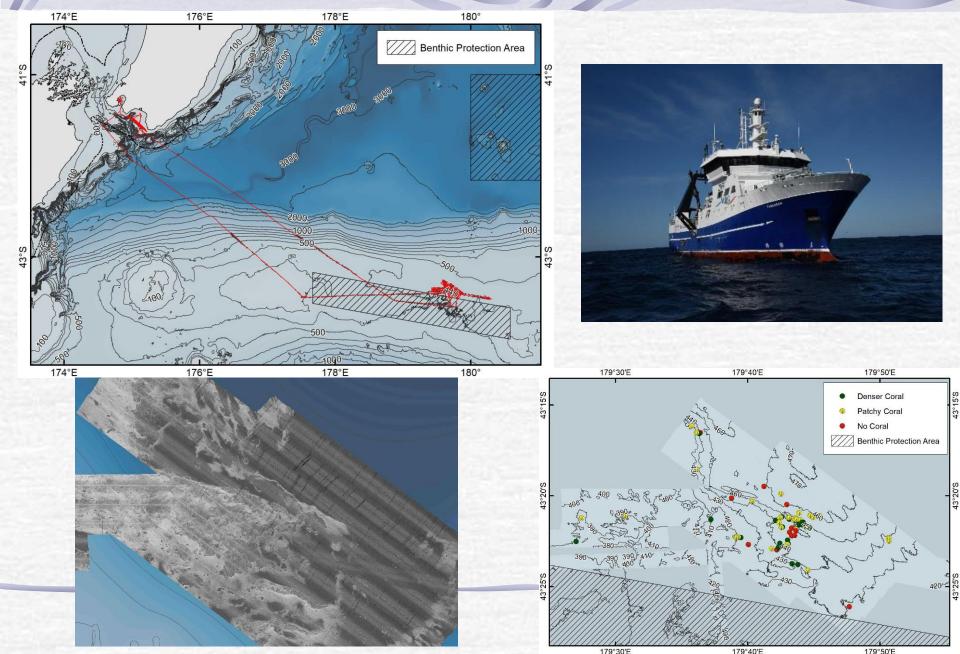
- Parameters with concentrations **5x** over the offshore seawater were:
 - For 30 min elutriates manganese (maximally 6.2x), ammoniacal-N (120x), vanadium (11x) and DOC (maximally 8.3x)
 - For 24 hour elutriates uranium (maximally 8.2x), ammoniacal-N (68x), vanadium (15x) and DOC (maximally 7.6x).
- The relative elevations in concentration of uranium, molybdenum and fluoride were low (<4.3x, <1.4x and <1.5x respectively) in the 30 min elutriates.

Chatham Rise Toxicity tests

Organism	Test type	End-point
Marine amphipod Chaetocorophium c.f. lucasi	Acute	96 h morbidity and survival
Blue-mussel Mytilus galloprovincialis	Chronic	48 h embryo-larval development
Microtox™ bacterium	Chronic	15 min bioluminescence
Vibrio fisheri	Official	reduction

Table 3-1: Toxicity results for 30 min elutriate procedure.

Sample code	Test Organism	EC ₅₀ a (95% CI)	EC ₁₀	Chronic NOEC ^b	Dilution for no
		%	%	%	toxicityd
PB1	Amphipod	>57.1%	57.1	5.7 ^c	17.5
	Blue Mussels	>100%	>100%	100	1
	Microtox™	>100%	c.90%	90	1.1
PB2	Amphipod	>57.1%	>57.1%	57.1%	<2
	Blue Mussels	>100%	>100%	100	1
	Microtox™	>100%	>100%	100	1
PB3	Amphipod	>57.1%	>57.1%	57.1%	<2
	Blue Mussels	>100%	>100%	100	1
	Microtox™	>100%	100%	100	1

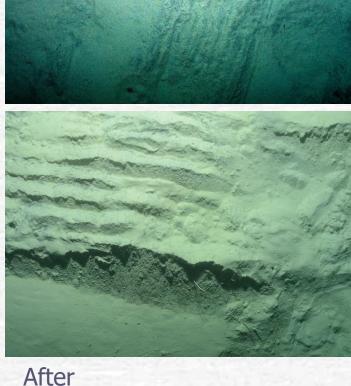

[≞] EC_N: The sample concentration causing an N% response relative to the control.

NOEC = No observed effect concentration; LOEC = Lowest observed effect concentration.

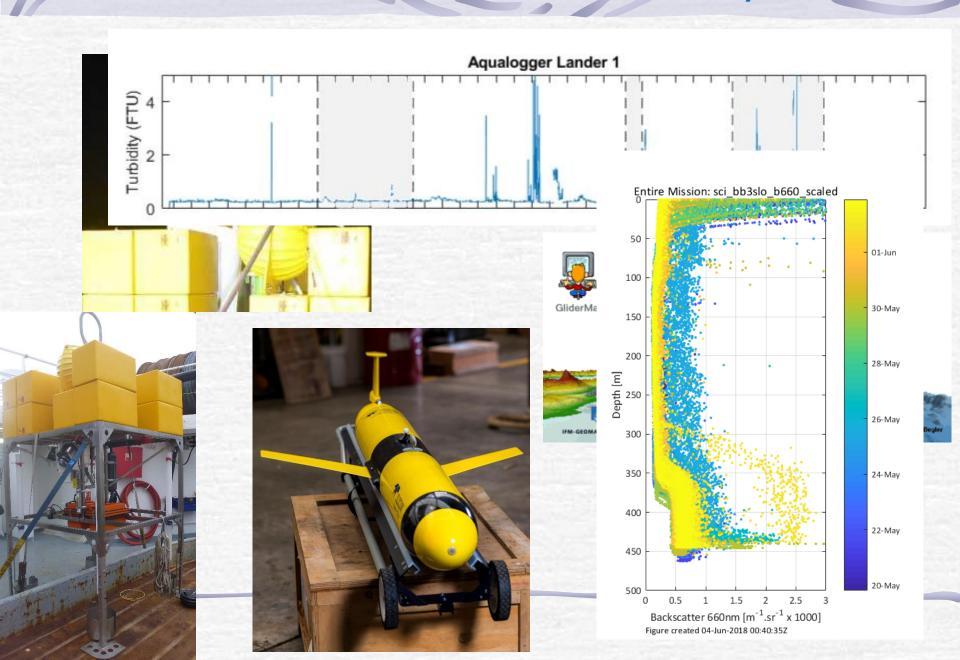
Estimated by acute LC₁₀/10 to allow for chronic effects.

d No toxicity dilution = (1/Chronic NOEC)x100.

Field: Survey Region



Extent of disturbance....

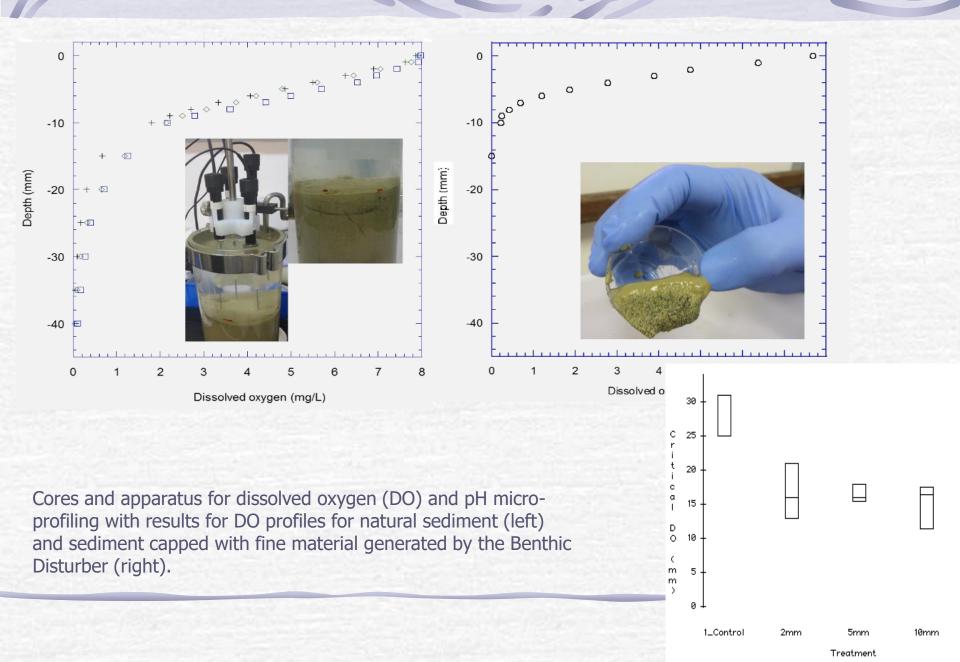

- Limited fluidisation of sediment (5 cm vs expected 15 cm-silty sediments under thin layer of muds)
- Sediment plume generated was less than expected
- Plus extensive benthic boundary layer height in water column (50-100 m above bottom)
- High levels of natural sedimentation

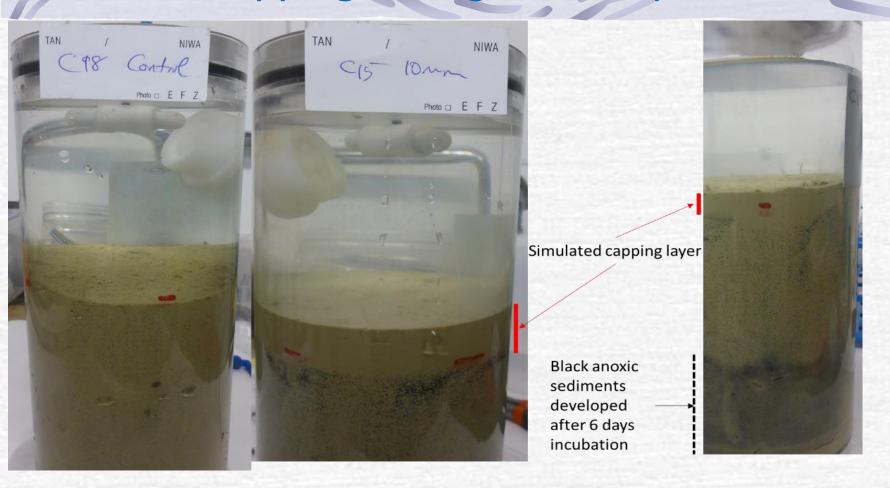
Before

Field: Benthic landers and Glider "Betty"

Field: Sediment coring

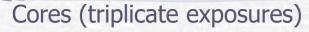
Ship-board lab work

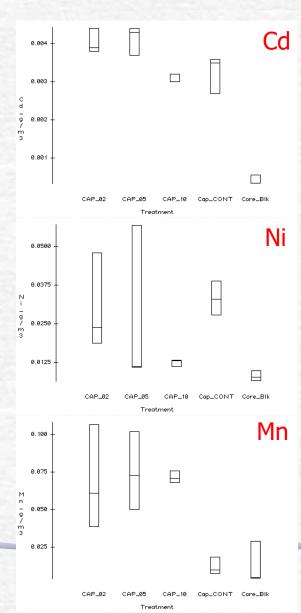

- Elutriates (metals, nutrients, DOC, settling rates of fines)
- Biogeochemistry of sediments (DO, pH, redox profiles)
- Sediment capping by fine sediments-incubation
- Core fluxes-incubations (metals, nutrients, DOC)
- Sediment community oxygen consumption (SCOC)
- Sediment erosion measurement system
 (EROMES) sediment transport parameters
 related to seabed shear stress

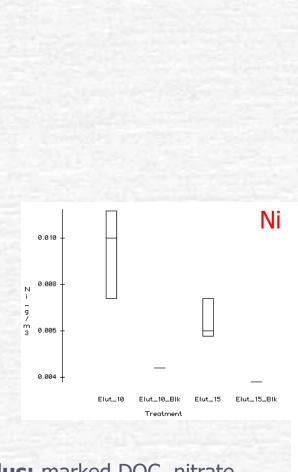


Elutriate trials Elictriale (Elitride Elutriate A 2h A4h A8h ->- fDOM(Turbidity (FNU) (DOM(OSU) 100 Elutriate test with natural reference 3 sediment suspension (200x v/v dilution) 2 and time series of measurements of turbidity and dissolved organic matter (fDOM). Time (h)

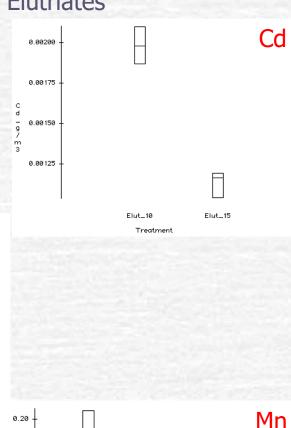
Field: Sediment capping illustration

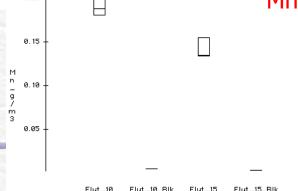

Sediment capping - long-term implications




Cores showing addition of fine sediment capping layer and generation of black anoxic (smells sulphurous) sediments at about 10 cm sub-surface after 6 days incubation.

Sediment capping & elutriates - DGT metals





Plus: marked DOC, nitrate and ammonia flux changes → key nitrogen cycle effects

Conclusions:

- Elutriate process need to be site-specific to best represent conditions/process (Issues: temperature, pH, time)
- Understand dredging/pumping/processing/dispersal/times involved (short but strong mechanical agitation)
- Spatial scale of physical changes (e.g., fine sediment deposition) are large
- Response times will be slow in the deep sea environment (potentially weeks to months) – new tools such as DGTs useful
- Field experimental work necessary to define biogeochemical process and effects (e.g., benthic nitrogen cycling flux & eDNA techniques)
- Understand what can change geochemistry (especially if sediment/material being mined is sulfidic or organic – role of DOC)
- Interdisciplinary team and robust assessment tools needed for investigations

Questions?

References:

- Clark, M.R.; Rouse, H.L.; Lamarche, G.; Ellis, J.I.; Hickey, C.W. (2014). Impact Assessments: General guidelines for offshore mining and drilling with particular reference to New Zealand. No. 81. NIWA Science and Technology Series, Wellington, New Zealand. pp. 110.
- Hickey, C.W.; Albert, A.; Thompson, K.A.; Martin, M.L. (2014). Chatham Rise sediment elutriates: toxicity and chemistry. No. CRP12303; HAM2014-079. NIWA report for Golder Associates Ltd. pp. 72.
- Swaddling, A.; Clark, M.; Bourrel, M.; Lily, H.; Lamarche, G.; Hickey, C.; Rouse, H.; Nodder, S.; Rickard, G.; Sutton, P.; Wysoczanski, R. (2016). Pacific-ACP States Regional Scientific Research Guidelines for Deep Sea Minerals. Pacific Community (SPC) and the National Institute of Water and Atmospheric Research (NIWA) of New Zealand. Prepared under the SPC-EU EDF10 Deep Sea Mineral Project, Suva, Fiji.
- Wysoczanski, R.; Hickey, C.W. (2014). Uranium in marine sediments. No. MFE14303; WLG2014-18. NIWA report for the Ministry for the Environment, pp. 28.
- Chatham Rock Phosphate Ltd (2014). Review of Sediment Chemistry and Effects of Mining (Golder 2014a). Appendix 11. No. Chatham Rock Phosphate (CRP) Ltd, pp. 95.

Acknowledgements:

The crew of the Tangaroa; team at Chatham Rock Phosphate; Crew and Cruise Teams on Dorado Discovery (and other cruise vessels) for sampling; Tineke Stewart, GNS Science for providing the sediment samples; NIWA Hamilton Ecotox staff for testing; Graham Corban, Hill Laboratories, for collection of the offshore seawater from Alderman Islands.

Contact: chris.hickey@niwa.co.nz

Future:

- To further develop standardised approaches for chemical and ecotoxic characterisation of deep sea mining sediments
- Establish effects of ocean pH on chemical equilibria
- Conduct reference toxicant tests with major ecotoxic metals which are released during elutriation of deep sea sediments (e.g., vanadium, cobalt)
- Establish baseline metals levels and other physiological measures (e.g., lipids content, stable isotope composition) for selected species in deep sea mining areas
- Develop standard methods with representative deep sea species (e.g., corals, amphipods)
- Investigate and potentially develop standardised toxicity tests for whole sediment and sediment elutriates using selected infaunal species
- Conduct chemical and ecotoxic characterisation on additional marine mineral sediments (e.g., manganese nodules)
- Characterise bioturbation and sediment recovery process