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ARTICLE INFO ABSTRACT

Predictions of river bed substrate cover are required for various purposes including delineating management
zones, linking with ecological status and assessing river rehabilitation options. Three contrasting methods were
tested for predicting the proportion of river bed covered by seven different substrate categories: generalised
linear models (GLMs), machine learning regression models (random forest), and a summed normal distribution
model (SND) which incorporates distribution of predictors and substrate covers throughout the modelling fra-
mework. Various predictors representing climate, geomorphology, land cover and geology were derived from
existing environmental databases to generate predictive models. Model performance was assessed through a
cross-validated comparison with substrate samples collected from 229 river sites distributed across New Zealand.
Model performance for 10-fold cross-validated predictions showed that the SND model performed best in pre-
dicting the proportions of riverbed covered by bedrock, boulder, cobble and fine gravel categories. Random
forest models performed best in predicting coarse gravel, sand and mud plus vegetation proportions. Therefore,
combined random forest and SND methods were used for estimating substrate cover proportions at unsampled
sites across New Zealand. Texture analysis of predicted substrate cover consistently showed downstream fining
of sediment size. The national predictions of substrate cover proportions are key descriptors that can be linked
with a wide range of national scale applications for ecological assessment of New Zealand Rivers. The techniques
developed and tested are applicable to other locations but it is notable that relatively poor performance in
regional cross-validation tests shows that transferability of substrate models to locations with no calibration data
is challenging.
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1. Introduction

There is a growing requirement for exploring the controls on, and
prediction of, substrate cover in rivers. Aquatic biota show strong re-
sponses to substrate movement as a direct mechanistically linked in-
dicator of bed disturbance (Jellyman et al., 2013). Sedimentary con-
ditions influence macroinvertebrate community structure (Rempel
et al., 2000). River bed grain size also influences suitability of
spawning, rearing and feeding habitats for many fish species, particu-
larly salmonids (Kondolf and Wolman, 1993; Armstrong et al., 2003;
Hedger et al., 2006). Without suitable stream habitat a given species is
unlikely to exist at that particular location (Reiser, 1998; Maddock,
1999). Obtaining a detailed knowledge about the characteristics and
spatial distribution of river bed substrate cover over a variety of spatial
scales is therefore essential for ecological assessment of rivers.

Understanding longitudinal variations in river bed grain size is
important as it has a dominant control on geomorphological and sedi-
mentological regimes. Rivers generally show a downstream fining of
sediments (Church and Kellerhals, 1978; Rice, 1998; Morris and

Williams, 1999; Ferguson, 2003; Costigan et al., 2014). River bed grain
size affects abrasion rates (Frings, 2008), rate and mode of sediment
transport (Wilcock and Crowe, 2003; Haddadchi et al., 2013), type and
dimension of river bed forms (Buffington and Montgomery, 1997; de
Almeida and Rodriguez, 2011), and the size of channel bank deposits
(Ten Brinke et al., 2004). Downstream fining of bed material occurs in
both gravel-bed and sand-bed rivers (Frings, 2008). However, this
general trend can be interrupted by: (i) sedimentation processes in
lakes, reservoirs and water conveyance structures; (ii) tributaries which
introduce large sedimentary inputs to significantly punctuate this fining
trend (Rice, 1998; Benda et al., 2004); (iii) dominated proximal sedi-
ment sources from surface soils with dissimilar characteristics estab-
lished independently from upstream catchment surface soil sources
(Haddadchi et al., 2015).

Fining of river bed sediments over the longitudinal profile is com-
monly modelled using a downstream exponential decrease in grain size:

D = Dyet (@)

where D in Eq. (1) is particle size characteristics (i.e., median
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diameter), Dy is initial particle size diameter (i.e., particle size of most
upstream sediment), L is distance downstream (in km) and a is an
empirical diminution coefficient (in km ™ h.

In addition to the effect of chemical weathering and abrasion in situ
(Miller et al., 2014; Menting et al., 2015), differential mobility of coarse
and fine grains within the bed sediment mixtures leads to downstream
fining (Parker and Toro-Escobar, 2002). Therefore, the diminution
coefficient reflects cumulative effects of both abrasion and sediment
sorting and, thus, it depends on lithology, channel morphology and
flow and sediment transport conditions (Powell, 1998).

Measurements of river bed substrate proportions have been carried
out for assessing stream habitat in the USA (Herbst and Suk, 2005),
New Zealand (Harding et al., 2009) and elsewhere. However, because
of the temporal and financial limitations of monitoring river bed grain
size via direct observation (Wright et al., 1998), the application of in-
direct methods based on topographic mapping analyses and remote
sensing are growing fast. Channel morphologic measurements derived
from traditional digital elevation models together with empirical hy-
drologic methods have been used to predict bed grain size (Buffington
et al., 2004; Gorman et al., 2011). Airborne LiDAR data has been used
to identify potential habitat in catchments by estimating river bed grain
size (Wilkins and Snyder, 2011; Carbonneau et al., 2012; Rinaldi et al.,
2013; Snyder et al., 2013). The main limitation of these approaches is
their low accuracy when applied to wetted areas of rivers, especially in
rivers with high turbidity and large water depth (Groll et al., 2016).

New Zealand has strong gradients in climate, geology, topography
and hydrological regime at the national scale. Various river and
catchment characteristics have been mapped onto a national river
network describing the spatial configuration of New Zealand's rivers
(Snelder and Biggs, 2002). Each segment of the river network has
characteristics assigned to it including: catchment area, stream length,
elevation and slope derived from digital elevations models; catchment
geology derived from geological maps; land cover from remote sensing
data; and runoff, rainfall and potential evapotranspiration from climate
station data (Leathwick et al., 2011). These characteristics have pre-
viously been used to predict the spatial distribution of invertebrate
communities (Booker et al., 2015), various fish species (Crow et al.,
2013), availability of physical habitat (Snelder et al., 2011a, 2011b;
Booker, 2016), hydrological indices (Booker and Woods, 2014), and
hydraulic geometry (Booker, 2010) in rivers across New Zealand.

The aim of this study was to predict spatial patterns in substrate
characteristics of alluvial river channels across New Zealand from na-
tionally available site and catchment characteristics. To do this, three
models with different levels of complexity, data needs and user inputs
were used to predict substrate proportions; a generalised linear model
(GLM) using an ordinary linear regression, random forest (RF) using
machine learning to fit a flexible regression, and summed normal dis-
tribution (SND) representing a complex model using distribution of
predictors for selection procedure together with genetic algorithm
procedure to optimise the results.

The study objectives were: (1) to apply various statistical techniques
to elucidate the distribution of river bed substrate covers as a function
of upstream catchment characteristics incorporating climate, geomor-
phology, land cover and hydrological factors; (2) to compare the pre-
dictive performance of these techniques when used to make predictions
at unvisited sites; (3) to predict river bed substrate proportions at un-
sampled rivers across New Zealand based on the best performing
models; and (4) to increase understanding of controls on sediment
characteristics at the national scale.

Fig. 1 outlines the strategy used to predict the substrate cover
proportions for river reaches across New Zealand. It involved calcu-
lating the areal proportions for each substrate category for each site,
extracting predictors and selecting independent variables using com-
bined expert opinion and chi-square tests, independency tests or auto-
mated procedures (depending on the type of model being fitted), fitting
various types of model to predict each substrate category, and
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calculating predicted values across the entire river network. Substrate
cover proportions calculated from each model type were compared.
Several performance metrics were then used to quantify predictive
performance.

2. Materials and methods
2.1. Site substrate observations

Field data were assembled from physical habitat studies applied by
NIWA (National Institute of Water and Atmospheric Research, New
Zealand) and various regional councils at 284 sites across New Zealand.
At each site, areal proportions of bedrock (> 512 mm), boulder
(256-512 mm), cobble (64-256 mm), gravel (8-64 mm), fine gravel
(2-8 mm), sand (0.06-2 mm), mud (< 0.06 mm) and vegetation were
observed visually at discrete observation locations across multiple
cross-sections. Observation locations were centred at regular intervals
across each cross-section except on sections with abrupt changes in bed
height, where extra observations were added. Cross-sections were po-
sitioned to represent all meso-habitat types (e.g., pool, riffle, run)
present within each site. Cross-section average sediment cover by each
substrate category was calculated using a weighted mean, with
weightings based on the separation of observation points. Reach aver-
aged sediment cover was calculated as a weighted mean of cross-section
cover with weightings based on the number of sampling cross-sections,
and the proportion of the entire reach area, covered by each meso-
habitat type. See Jowett et al. (2008) for further details of field pro-
cedures. In total, 73,550 observations were included in the data set (an
average of 259 per site). The reach length surveyed at each site ranged
from 30 to 3000 m, averaging 330 m per site. The average number of
cross-sections at each site was 14, and the average spacing between
observation points was 0.84 m. Sampling sites were located throughout
the New Zealand river network (Fig. 2) and represented a wide range of
river sizes, climatic, topographic and hydrological conditions. See
Booker (2016) for further details. Particle size distribution of observed
substrates varied between sites, with median diameter (Dso) of sub-
strate materials ranging from < 0.06 mm to larger than 100 mm.

Grid co-ordinates and site descriptions from various data providers
were used to identify which of the 570,000 reaches that comprise the
New Zealand river network best represented the position of each site.
There were 37 reaches that had more than one sampled site (two to five
sites) assigned to them. The proportion for each substrate category
averaged over all sites assigned to the same reach was used to represent
substrate proportions at these reaches. This reduced the number of
sampled sites from 284 to 229.

2.2. Nationally available predictors

Many environmental variables have previously been mapped onto
the New Zealand river network (Leathwick et al., 2008; Booker et al.,
2015) and were therefore available as potential explanatory variables
for predictive models (Table 1). Climate is represented by various
parameters representing different characteristics of precipitation (i.e.,
usRainDays10, usRainDays25, usRainDays50, usRainDays100, usRain-
Days200, usAnRainVar), hydrology (usFlow, SpecificMeanFlow, Speci-
ficMALF, FRE3, SpecificAnnualFlood) and temperature (segEquiTSum,
segEquiTwin, usPET). Geomorphology is represented by eight para-
meters such as upstream catchment area (usArea) which is strongly
related to wetted width of the river segment (Booker, 2010), average
slope of catchment (usAveSlope) calculated from 30-m digital elevation
model (DEM), and distance from the coast (dsDistToSea) indicating the
location of the site in the river network. Land cover is represented by
the proportion of surface area occupied by five categories of land cover
(usPastoral, usIndigForest, usExoticForest, usUrban, usScrub; see
Table 1 for details). Geology of the upstream catchment, which has a
strong influence on the bed material cover of downstream river reaches,
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is represented by five parameters such as proportion of catchment area
occupied by alluvium land resource inventory (usAlluvium), and
average particle size of underlying rock from hillslopes distributed
throughout the upstream catchment area (usParticleSize). The us-
ParticleSize parameter is derived from the Land Environments of New
Zealand (LENZ), and it represents the particle characteristics of the
geological regolith on an ordinal scale (Leathwick et al., 2002). Pre-
vious studies have directly compared the size distribution of sediments
in channels and adjacent hillslope sources and they suggest that there
may be general relationship between the size of sediments originated
from hillslopes and supplied to channel banks (Marshall and Sklar,
2012; Attal et al., 2015; Riebe et al., 2015; Sklar et al., 2017). These
associated databases have previously been used to define a hierarchical
classification of New Zealand's rivers called the River Environment
Classification (REC). For example, a priori defined topographic group-
ings have been applied to classify each river segment as being either
Glacial Mountain (permanent ice > 1.5%), Mountain (> 50% annual
rainfall volume above 1000 m ASL), Hill (50% rainfall volume between
400 and 1000 m ASL), Lowland (50% rainfall below 400 m ASL), or
Lakefed (Lake influence index > 0.033). See Snelder and Biggs (2002)
and Snelder et al. (2005) for full details.

Data transformations were used to make highly skewed distribu-
tions less skewed and restore symmetry to the data. These transfor-
mations are valuable both for making patterns in the data more
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interpretable and for helping to meet the assumptions of inferential
statistics, for instance, when applying regression methods, normal dis-
tributions are desirable. Therefore, predictor variables with skewed
distributions were square-root or logl0 transformed to aid interpreta-
tion of the fitted relationships by GLM and RF models. For RF models,
transformation of predictors should not influence fitting because they
are invariant to monotonic transformations of the predictors, but may
influence calculated importance of predictors.

2.3. Estimation methods

For this study three methods for predicting river bed substrate
proportions were compared. The three methods were selected and ap-
plied deliberately in particular ways such that they represented con-
trasting abilities to incorporate reduction of potential predictors, non-
linear responses, interactions between predictors, and interactions be-
tween responses. A brief description of the first and second methods is
provided as these methods are well established. The third method is less
established, therefore a full description is provided.

The first method was to fit a generalised linear model (GLM; Nelder
and Wedderburn, 1972) to each substrate category separately. GLMs
were deliberately designed to represent relatively simple regression
models. GLMs apply a flexible generalisation of ordinary linear re-
gression to accommodate both non-normal response distributions and
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Fig. 2. Map showing sampled reaches (n = 229) and
100 km courses from highest source to the sea for some main rivers.
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transformations to linearity (Venables and Ripley, 2002). They allow
the linear model to be related to the response via various link functions
by allowing the magnitude of the variance of each observation to be a
function of its predicted value. A logit link function and binomial error
distribution were applied in each GLM as is appropriate when the re-
sponse is proportion data. Predicted responses were therefore always
monotonous. The same limited set of predictors was applied to each
substrate category with no consideration of interactions between pre-
dictors.

The second method was to fit random forest (RF) models (Breiman,
2001), similar to that applied by Snelder et al. (2011b) to predict mean
grain size across the French river network. This method was deliber-
ately selected and applied such that it represented a set of relatively
complex relationships which are able to consider interactions between
predictors and complex forms of responses, but not interactions be-
tween substrate categories. This method uses machine learning to fit a
flexible regression representing the relationship between combinations
of predictors and the areal cover proportion of each substrate category
separately.

The third method was to fit summed normal distribution (SND)
models. This method was deliberately selected and applied such that it
represented a complex regression method that incorporates distribu-
tions of predictors and substrates rather than using central tendency
parameters throughout the entire modelling framework. The technique
of assigning distributions is similar to the approach described by Olley
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et al. (2013) and Haddadchi et al. (2014) for tracking sediment sources
using distribution mixing models.

The first step in applying the SND model is to standardize the out-
puts (substrate cover proportions in this case) and predictor variables,
and to derive distributions for individual outputs and variables by
summing normal distributions centred around each sampled variable/
output value using kernel density estimation. Fig. 3 shows the dis-
tribution of substrate cover proportions estimated using summed
normal distributions, as well as the individual sample cover proportions
and their assigned uncertainties (whisker plots below the main plot).
The kernel density distribution for each predictor variable, P, and type
of substrate cover, S, are given by:

m b g j—ppi Na

Zf Zapu

j=1 a \/27TUP” )
m b sk j—pesi )

Z‘/' ZUsng

=1 a 7TO'Skj (3)

where: i is the predictor variable index (i = 1, ..., n), j is the sample
number (j = 1, ..., m) and k is the substrate category index (k = 1, ...,
z); up;, j and psy ; are the predictor and substrate cover values respec-
tively (for a specific substrate/output and sample); and op;, ; and osy, ;
are the uncertainty of each sample's predictor/substrate cover value.
The uncertainty values are set equivalent to the standard error of the
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Table 1
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Summary of the climate/flow, geomorphology, land cover and geology predictors together with their mean and standard deviation (SD) for all 229 datasets. “ = log transformation

applied for RF and GLM models. ® = square root transformation applied for RF models.

Parameter Unit Mean SD Description
Climate/flow segEquiTSum °C 20.88 1.9 Summer (January) equilibrium air temperature at location of river segment
segEquiTwin °C 6.92 2.36 Winter (June) equilibrium air temperature at location of river segment
usRainDays10 Number of 3.58 1.12 Average number of days per year within catchment with rainfall intensities > 10 mm/month
days/yr
usRainDays25 Number of 1.14 0.56 Average number of days per year within catchment with rainfall intensities > 25 mm/month
days/yr
usRainDays50 Number of 0.27 0.21 Average number of days per year within catchment with rainfall intensities > 50 mm/month
days/yr
usRainDays100 Number of 0.04 0.05 Average number of days per year within catchment with rainfall intensities > 100 mm/month
days/yr
usRainDays200" Number of 0.004  0.01 Average number of days per year within catchment with rainfall intensities > 200 mm/month
days/yr
usAnRainVar mm 1755 21.3 Coefficient of variation of annual catchment rainfall
usPET mm 954.6 152.2 Annual potential evapotranspiration of catchment
usFlow m®/s 26.2 82.4 Total annual runoff volume
FRE3 events/yr 12.9 5.02 Number of events per year exceeding three times the median flow based on mean daily flows, with
no windows to account for successive events applied.
SpecificMALF" m®/s/km? 0.009  0.007  Mean annual low flow per unit catchment area
SpecificAnnualFlood” m®/s/km? 0.435 0.274  Mean annual flood (derived from mean daily flows) per unit catchment area
SpecificMeanFlow" m®/s/km? 0.0364 0.0256 Mean flow per unit catchment area
Geomorphology  segSlope®™ m/m 0.006 0.01 Average segment slope
segShade % 0.17 0.19 Estimated riparian shade
usArea” km? 810.5 2523 Upstream catchment area
segAveElev" m 146.3 165.4  Average elevation of the segment
usCatElev m 501.3 307.9 Average elevation of catchment
usSteep %,/100 0.14 0.17 Proportion of catchment with slope < 30°
usAveSlope Degree 14.2 6.5 Average slope of catchment calculated from 30 m DEM grid
dsDistToSea km 70.9 91 Distance of the segment to the coast
Land cover usPastoral %,/100 0.31 0.29 Proportion of catchment covered by pastoral land cover
usIndigForest %,/100 0.33 0.29 Proportion of catchment covered by indigenous forest land cover
usExoticForest® %/100 0.07 0.14 Proportion of catchment covered by exotic forest land cover
usUrban® %/100 0.003 0.02 Proportion of catchment covered by urban land cover
usScrub® %/100 0.08 0.11 Proportion of catchment covered by scrub land cover
Geology usCalc Ordinal scale 1.51 0.44 Catchment average of calcium of underlying rocks, 1 = low to 4 = high
usHard Ordinal scale 31 0.72 Catchment average of hardness of underlying rocks, 1 = low to 5 = high
usPhos Ordinal scale 2.33 0.94 Catchment average of phosphorous concentration of underlying rocks, 1 = low to 5 = high
usParticleSize Ordinal scale 2.78 1.2 Catchment average of particle size of underlying rocks, 1 = fine to 5 = coarse
usAlluvium® %,/100 0.084  0.17 Area of catchment covered by alluvium land resource inventory

mean for the parameter being considered, derived from standard de-
viation of datasets divided by the square root of sample size.

To solve indefinite Gaussian (normal) integrals in Egs. (2) and (3),
1000 increments with bin width of 1.2 x 10~ * were used. The terms a
and b in these equations were the lower and upper limits of integration.
Due to pre-normalizing of predictor values and substrate proportions,
integral limits of — 0.1 to 1.1 were applied.

The second step is, for models of each substrate class, to determine
the relative coefficient of each predictor. In SND, instead of calculating
a single value as the coefficient of each environmental factor on the
model, their normal distributions were estimated. Model fitting is car-
ried out by simultaneously minimising the sum of squared relative er-
rors:

n 2
Z PXik — Sk

4

where X is the normal distribution of coefficients with mean value (ux;
) as coefficient value for each environmental predictor and standard
deviation (ox; ) as uncertainty of their calculations:

_ Grik—pxi )
2
ZU)Ciyk

(5)

Mean values in coefficients are modelled as truncated normal dis-
tributions:
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- 1<Xjx<1 (6)

As local optimisation methods can fail to identify globally re-
presentative solutions of the model, genetic algorithm optimisation
with 1000 iterations was deployed to find optimum coefficients.
Minimising the sum of squared relative errors (E) was used as the ob-
jective function for this optimisation (Eq. (4)). The Optquest algorithm
in Oracle's Crystal Ball software (Oracle, 2015) was used for this task. In
addition, to select the values within the distributions, the Latin Hy-
percube Sampling (LHS) method with 500 iterations was applied. Al-
though these make the optimisation procedure more time consuming,
the precision of results significantly increases compared with local
optimisation methods. Initial values for all predictions were selected
using genetic algorithm optimisation estimates of linear regressions.

Once optimum distributions of coefficients for X; x have been found,
the SND models can be used to derive predictions of substrate cover
across new Zealand. The major advantage of SND over the RF and GLM
is that for each new prediction of each substrate category, uncertainty is
calculated explicitly within the model fitting procedure. Therefore, to
make predictions, 10 random values (R = 10) of predictors' contribu-
tions within the range of their normal distributions (X;,), were gener-
ated to predict substrate proportions and their related uncertainty
across New Zealand rivers:

(Pi-unsampledXi,r)/R
1 @)

M=
MD

r=11i

where Pj_ynsampled Were predictors for river reaches across New Zealand.
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0.04 Fig. 3. Probability distribution of substrates used in the
summed normal distribution model (see Eq. (4)). Points
under the distributions are the 229 sampled sites colour-
coded to seven river bed substrate categories used to derive
theses distributions using summed normal density function
as described in Eq. (4). The error bars are equivalent to one
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2.4. Selection of predictor variables

Different approaches for selecting predictor variables were applied
for the three methods: GLM, RF and SND. The complexity of the ap-
proaches for selecting variables was chosen in-line with complexity of
the method. Key aims for variable selection were to identify the para-
meters which were most useful for predicting substrate, reduce the
number of variables to prevent over-parameterisation of the models,
and to avoid parameters which were strongly dependent.

For the relatively simple GLM method, four predictors were selected
using expert opinion. The predictors were selected as being the most
appropriate to characterise patterns in the dominant processes con-
trolling sediment deposition. The availability and size-distribution of
sediment supply was represented by catchment average of particle size
of underlying rocks (usParticleSize). Flow magnitude was represented
by catchment runoff (Log10 of SpecificMeanFlow). Flow variability was
represented by the number of events exceeding three times the median
flow (FRE3). Geomorphological setting including slope and valley
confinement was represented by the REC Topographic class (e.g.,
Mountain, Hill, Lowland) as described above. No interactions were
included in any GLMs and no methods for variable reduction were
applied. Chi-square tests were applied to assess the significance of
predictors.

For the second method of analysis, RF model, an initial long-list of
22 predictors was selected from those available (Table 1) based on
expert knowledge. This reduced list was selected to eliminate some
parameters which were known to be strongly dependent. An automated
variable selection procedure known as VSURF was then applied in
which predictors are eliminated through a step-wise ascendant strategy
designed to decrease the error rate (Genuer et al., 2010; Genuer et al.,
2015). VSURF was applied separately for the different substrate classes,
allowing automated identification of a reduced number (between four
and eight) of the most important predictors for each class, which were

then used to produce the models.

Since co-varying predictors can lead to biased results in the third
method of analysis, SND models, correlation between predictor vari-
ables was examined first, prior to developing the models. To assess
whether predictors were independent of each other, a test of in-
dependence using two tailed Pearson's chi-squared was applied to in-
vestigate relationships between each predictor and every other pre-
dictor. Significant relationships between predictors (P-value < 0.01%)
were identified, and predictors were eliminated manually to create a
reduced list of 13 independent predictors (i.e. no significant relation-
ships between them). The same predictor variables were selected across
substrate classes for the SND model.

2.5. Performance metrics

Two cross-validation techniques, k-fold and regional, were applied
to quantify predictive performance independently from the fitted data
set. The same cross-validation techniques were applied across models to
ensure consistency when evaluating performance.

A k-fold cross validation was carried out by dividing the observed
sites into 10 subsets. For each model, for each subset, predicted values
were obtained after having fitting to all data from the remaining 9
subsets. As SND models require a minimum number of datasets to de-
rive distributions using kernel density function, leave-one-out (LOO)
cross validation or k-fold cross-validation with smaller groups of sub-
samples (i.e. higher number of folds) were not appropriate for model
evaluation. It should be noted that the cross-validation technique ap-
plied can be used to indicate model performance at unvisited sites
within the environmental range of the observed sites, but does not
elucidate on performance outside of that environmental range.

Regional cross validation was undertaken by splitting the dataset
into two exclusive subsets containing sites from the North Island and
South Island respectively. Predicted substrate cover proportions for
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North Island sites were obtained after fitting the models to 73 datasets
from the South Island, and predictions for the South Island sites, were
obtained after fitting to 156 North Island sites.

Following the recommendations of Moriasi et al. (2007) and Muleta
(2012), predictive performance was assessed using four performance
metrics regardless of model type or substrate category. Mean absolute
deviation (MAD) is an indicator of the distance between the model
predictions and eventual outcomes (Hyndman and Koehler, 2006).
Nash-Sutcliffe efficiency (NSE) determines the relative magnitude of the
residual variance in the estimated river bed size fractions compared to
their measured variance (Nash and Sutcliffe, 1970). Values of one in-
dicate a perfect match between observed and predicted values. Values
of zero indicate the same performance as would be the case if all pre-
dictions were equal to the mean observed value. Percent bias (pbias), is
the ratio of the sum of the river bed size fraction residuals to the sum of
the observed size fractions. It indicates the average tendency of the
estimates to be larger (negative pbias) or smaller (positive pbias) than
their observed counterparts (Gupta et al., 2009). Root-mean-square
deviation (RMSD) determines the square root of the variance of the
observed minus estimated river bed size fractions. RMSD is a commonly
used performance criteria. It quantifies the absolute precision of the
predicted values (Gupta et al., 2009). See Moriasi et al. (2007) for
further details of how these performance metrics are calculated and
how various performance metrics may complement each other when
comparing observed and predicted values. The method of Pineiro et al.
(2008) was applied when plotting observed against predicted values.

3. Results and discussion
3.1. Input variables and fitted models

For the GLM models, results from chi-square tests showed con-
siderable variation between the significance of predictors between
substrate categories (Table 2). GLMs showed no evidence of over-
dispersion for any substrate category; residual deviance was always far
less than residual degrees of freedom. For example, LogSpecificMean-
Flow was significant for all categories except fine gravel and sand. The
GLMs also showed strong responses in proportion areal cover to each
predictor. For example, the proportion covered by the combined mud
and vegetation category (mudveg) decreased with increasing FRE3,
usParticleSize and SpecificMeanFlow. The proportion covered by
mudveg was greatest in Lakefed and Lowland classes, followed by Hill,
Mountain and Glacial Mountain classes (Fig. 4).

Predictors representing slope, elevation, rainfall variability and flow
per unit area were often selected by the VSURF procedure to be re-
tained in the RF models. Predictors relating to land cover were not
strongly selected (Fig. 5). Selection of variables representing slope and
rainfall was consistent with the strongest contributors to estimates of
mean grain size using RF models in Snelder et al. (2011b) study.

There was some variability in predictors selected between substrate
categories in the RF models (see Fig. 5). Variable importance, as defined
by mean decrease in node impurity (Gromping, 2009), also varied be-
tween substrate classes, with usCatElev being an important predictor
for sand and fine gravel, but usPastoral being the most importance
predictor for mudveg and boulder. This variability is likely due to a
combination of factors including non-independence of the predictors,
complex interactions between predictors and differences in the physical
processes that govern the condition of each substrate category causing
differences in predictors that were selected for each sediment category.
Sediment generation, transport and deposition are governed by a
complex trade-off between sediment availability and power to erode or
transport. Inconsistency in selected predictors between random forest
models for each substrate category indicates that this trade-off may be
best represented by a combination of the available predictors, including
their interactions.

For the SND model, 13 independent predictor variables were

136

Catena 163 (2018) 130-146

retained after eliminating dependant variables (Fig. 6). From 10 para-
meters representing climate and hydrology of the catchments, coeffi-
cient of variation of catchment rainfall, number of days with rain-
fall > 200 mm month™! and annual runoff were retained for the
modelling analysis. Two geomorphological parameters including slope
and average elevation of the segments and four land use catchment
proportions (i.e. exotic forest, indigenous forest, scrub and urban) were
also used as the input of the distribution model. Four out of five vari-
ables which represent geology of the upstream catchments including
average phosphorus and calcium concentration, particle size of under-
lying rocks and percentage of catchment covered by alluvium success-
fully passed the independency test.

The estimated normal distribution of the predictors' contribution
derived from the SND models are shown in Fig. 7 for all eight river bed
substrate categories. The SND model allowed variations in each of the
coefficients of Eq. (5) to vary within each river bed substrate category.
Therefore, the mean and standard deviation of normal distributions
were determined separately for each substrate and predictor. The ab-
solute magnitude of different predictor coefficients for each substrate
indicates the strength of a predictors influence on the modelled sub-
strate cover. The sign of the coefficient indicates the direction of cor-
relation.

In general, the slope of the reach on which sites were located
(segSlope) had highest contributions to the prediction of river bed
substrate covers. The relative contribution of slope to coverage of dif-
ferent substrate classes is interesting in that roughly scales with grain
size. The mean coefficient for segSlope has a value of 0.40 for boulder,
0.25 for cobble, 0.15 for coarse gravel, — 0.05 for fine gravel, and
—0.10 for sand.

Other predictors tend to differentiate one substrate class from
others. For example, usRainDays200 (average number of days per year
within catchment with rainfall intensities > 200 mm/month) has a
very strong positive coefficient for coverage of boulder substrate but
small negative coefficients for all other substrates. This shows that this
parameter is important to identify locations with high coverage of
boulders. The physical basis for this may to be that the threshold of
200 mm/day is a very high rainfall intensity, which is likely to be as-
sociated with river conditions capable of transporting boulders (given
sufficient slope, also a very strong predictor of boulders as previously
mentioned).

The coverage of mud and vegetation (mud/veg), and bedrock both
have very different predictor coefficients compared with other substrate
types. This is unsurprising given that they are both influenced by
somewhat different processes compared to the other substrate types.
Mud/veg substrates have cohesive sediment unlike other substrate
classes, and bedrock represents an absence of sediment rather than
presence of a particular size. Predictors which have a strong influence
on bedrock are slope and usAlluvium. There is a logical physical basis
for both of these parameters having a strong influence: high slope
causes hydraulic conditions where even the largest sediment can be
scoured out of a reach, and presence of alluvial deposits means that
there is less likely to be any bedrock for scour to expose.

The predictors with the strongest contribution to mud/veg coverage
include the land cover parameters usUrban and usExoticForest (% land
cover by urban areas and exotic forest respectively). This is interesting
as no other substrate category has any land cover parameters identified
as one of its important predictors (except sand which has usScrub as an
important predictor). This suggests that the proportion of mud and
vegetation is more strongly influenced by land cover than other sub-
strate types. The physical basis for this may be that exotic forest and
urban areas are significant contributors of fine sediment (the physical
basis for usScrub as a predictor for sand coverage is not obvious).

Geology predictors including upstream catchment area covered by
alluvium and average concentration of calcium within the catchments
has little influence on most substrate classes.
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Results for chi-square test for GLM models of each substrate categories. Df = Degrees of freedom.

Substrate Category Predictor Df Deviance Residual Df Residual deviance P-value
Bedrock 228 32.0
usParticleSize 1 0.035 227 31.9 0.642
LogSpecificMeanFlow 1 1.851 226 30.1 0.001
FRE3 1 2.137 225 28.0 0.000
Topography class 4 1.099 221 26.9 0.151
Boulder 228 80.9
usParticleSize 1 0.147 227 80.7 0.496
LogSpecificMeanFlow 1 12.459 226 68.3 0.000
FRE3 1 0.770 225 67.5 0.119
Topography class 4 1.121 221 66.4 0.471
Cobble 228 55.6
usParticleSize 1 5.770 227 49.8 0.000
LogSpecificMeanFlow 1 4.404 226 45.4 0.000
FRE3 1 1.669 225 43.7 0.002
Topography class 4 1.827 221 41.9 0.040
Coarse gravel 228 58.2
usParticleSize 1 3.644 227 54.6 0.000
LogSpecificMeanFlow 1 2.270 226 52.3 0.001
FRE3 1 0.443 225 51.9 0.153
Topography class 4 1.808 221 50.1 0.080
Fine gravel 228 33.6
usParticleSize 1 0.004 227 33.6 0.872
LogSpecificMeanFlow 1 0.087 226 335 0.477
FRE3 1 0.139 225 334 0.368
Topography class 4 1.025 221 32.4 0.201
Sand 228 39.6
usParticleSize 1 4.515 227 35.1 0.000
LogSpecificMeanFlow 1 0.000 226 35.1 0.967
FRE3 1 0.129 225 34.9 0.402
Topography class 4 3.181 221 31.8 0.002
Mudveg 228 79.3
usParticleSize 1 11.270 227 68.0 0.000
LogSpecificMeanFlow 1 8.796 226 59.2 0.000
FRE3 1 0.015 225 59.2 0.811
Topography class 4 7.754 221 51.4 0.000

3.2. Model validation

Model performance for 10-fold and regional cross-validated pre-
dictions of each river bed substrate category derived from each model is
given in Fig. 8.

Using the 10-fold cross validation technique, RMSD values for the
SND model ranged between 9.6% to predict bedrock proportions and
19.4% to predict mudveg with average RMSD of 14.2% and for GLM
model from 10.4% (for bedrock) to 20.8% (for boulder) with average of
16.1%. For RF models RMSD varied from 9.7% to 19% to predict
bedrock and mudveg proportions, respectively, with an average of
14.3%.

Biases were relatively small (pbias ranging from — 1.1% to 0.53%)
in GLM models in comparison with the RF models
(—4.5% < pbias < 0.47%) and SND models (— 0.02% < pbias <

2.4%). Low pbias values indicate that the average tendency of simu-
lated variables estimated by GLM models were close to the respective
observed substrate classes, however high RMSD values demonstrate
large variance in predicted variables. Except for fine gravel predictions
using GLM, NSE was positive for all substrate categories and all models.
Negative NSE values for fine gravel proportions estimated by the GLM
model (i.e. —0.01) indicate that the mean observed fine gravel pro-
portion is a better predictor than the simulated GLM values.

In General, GLM models were unbiased, but performed less well
than RF and SND models. The SND model gave better precision (lower
RMSD and higher NSE values) and less biased results (pbias closer to
zero) when compared to RF models in predicting bedrock, boulder,
cobble and fine gravel areal cover proportions. RF models performed
better for coarse gravel, sand and mud proportions.

The regional cross validations showed RMSD values for the SND
model ranged from 11% (for Bedrock) to 22% (for mudveg), only

slightly worse than for the 10-fold validation. For the RF model, RMSD
were very similar to the SND model except for boulder and sand where
the RF model performed slightly worse. For all three models, biases
were much worse in the regional than 10-fold validation, ranging from
— 38 to + 50. Unlike for the 10-fold validation the SND model was the
least biased (—11 to +17) and showed a different pattern of bias
compared to both GLM and RF which were similar.

NSE was negative for all GLM predictions in the regional validation
except for mudveg. This indicates large uncertainties of the GLM model
on predicting substrate cover proportions outside the region the model
were calibrated. RF and SND models performed better but still poorly
compared to the 10-fold validation. All models had a negative NSE for
fine gravel in the regional validation.

Overall the performance of all three models was worse in the re-
gional than the 10-fold cross validation. Part of the reason for the re-
duced model performance in the regional cross-validation is the lower
number of sites used to fit the models, particularly when predicting
substrate at the 156 North Island sites after fitting the model to only 73
South Island sites. However, the poor performance also suggests that
the models require training using local data to perform well, despite the
comprehensive range of predictor variables including climate/hy-
drology, geomorphology, land cover and geology. This has implications
for development of predictive models of substrate cover outside New
Zealand, suggesting that fitting to local data will be required.

It is notable that the SND model performed better than the RF model
in the regional validation, despite having similar performance in the 10-
fold validation. This indicates that the SND model may give better
predictions in locations were no training data are available.

Visual inspection of observed data against 10-fold cross validation
predicted values shows that all models generally struggle to predict
high coverage by any single substrate type (Fig. 9). This is likely due to
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Fig. 4. GLM predicted areal cover by mudveg as a function of runoff (LogSpecificMeanFlow), flow variability (FRE3), average particle size of underlying rock (usParticleSize) for each

REC topography class. See Table 1 for variable definitions and units.

difficulty of modelling the skewed distribution of the observed data
with many sites having coverage between 0% and 20% of any given
substrate, but very few having > 80%.

To evaluate the performance of these predictive models, in addition
to their accuracy, level of complexity, number of input parameters, and
the time required for preparing and running the models should be
considered in future application of these models. For instance, the
number of predictors and simulation time for running the simple linear
models (GLM) were significantly lower in comparison with the SND
models which required distribution of predictors and used a time

consuming genetic optimisation procedure.

3.3. Prediction of substrate textures across New Zealand rivers

The best performing models based on k-fold cross validation for
each substrate category were used to predict areal proportion for all
reaches across New Zealand. Bedrock, boulder, cobble and fine gravel
proportions were predicted by the SND model and RF models were used
to predict coarse gravel sand and mudveg proportions. Selected catch-
ment and site predictors (see Figs. 5 and 6) for all reaches of the
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further analysis due to their dependency to other variables.

national river network with Strahler stream order of one to eight were
used as the input parameters. The predictions for each reach were
scaled such that they summed to one. The worse performance of the
models when assessed using the regional cross validation suggests that
caution should be applied when applying the models to locations where
few calibration data were available.

Spatial patterns of the percentage of sand and finer sediments
(Fig. 10a) and their median diameter (Fig. 10b) were mapped across
New Zealand for rivers of Strahler order greater than four. There were
coherent spatial patterns in the proportion of sediments with fine se-
diments. Greater proportions of finer sediments were predicted for
smaller lowland rivers on the east Coast of the South Island, whereas
smaller proportions of finer sediments (and therefore greater propor-
tions of coarser sediments) were predicted for more mountainous rivers
across the Southern Alps (which run along the spine of the South Island)
and larger mountain-fed rivers as they cross lowland areas. In the North
Island, greater proportions of finer sediments were predicted for low-
land areas, particularly toward the east and north coast.

Median grain size (Dsq) for each river reach was calculated by linear
interpolation between the high and low values of the size fraction range
in which the percentile was found.

Fig. 11 shows the variability of Ds, for different river types on each
stream order, separately. Based on the predicted substrate cover pro-
portions derived from the combined RF and SND models, the median
value of Dsp was 70 mm ranging from 5 to 256 mm for all river first
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order reaches. The median value of Ds, for all 4th, 5th, 6th and 7th
order streams were 60, 58.5, 52 and 42 mm, respectively. Decrease in
median values of Dsq from first to seventh order streams indicate a
general trend for downstream fining of surface Dsg in rivers across New
Zealand. Strong relationship between mean grain size and position of
the reach in the river networks were contrary with findings by Snelder
et al. (2011b) on river reaches throughout France. Note that Snelder
et al. (2011b) directly estimated mean grain size from catchment
variables, whereas in this study, we first modelled each size fraction
and then mean grain size was calculated based on size fraction esti-
mates. As expected this trend is not followed along river's whose sedi-
ment transport is highly affected by lakes at their upstream (i.e. Lakefed
river types in Fig. 11). In addition, there are stronger relationships
between mean grain size and distance from the headwaters, indicated
generally by stream order, in hill type rivers (ranging from 105 mm in
1st stream order to 40 mm in 7th stream order) in comparison with
Lowland classes (ranging from 49 mm in 1st stream order to 40 mm in
7th stream order). This is because the number of tributaries con-
tributing to Lowland river reaches is higher than reaches in the hill
topographic class and thus as observed by Rice (1998) and Benda et al.
(2004) sedimentary inputs from tributaries interrupt the general
downstream fining trend.

Therefore, texture analysis of predicted substrate covers demon-
strated that rivers with lower stream order which originate from the
upper parts of the catchments had the highest proportions of sediment
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Fig. 9. Observed against K-fold cross validation (CV) predicted
values of proportion areal cover for each size fraction of sub-
strate category. Solid line represents 1:1. Grey dashed line is a
linear regression.
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Fig. 10. Map of median diameter (Dso) for the entire New
Zealand network with Strahler order 4 and above.

in the gravel size fractions and the further downstream (i.e. rivers with
high stream orders) the more sand sized fractions were present.

To better demonstrate downstream trends of decreasing particle size
on each river reach, longitudinal profiles of the predicted sediment sizes
are presented for 26 major New Zealand rivers (Fig. 12). We fitted an
exponential curve to the data (Eq. (1)) consistent with textbook geo-
morphic relationships for downstream fining. The exponential curve
provided a better fit to the median diameter (Dsy) data rather than
diameter for which 84% of the sediments are finer (Dg4) as regressions
fitted to D5, values were significant for all rivers at P < 0.0001 shown
in Fig. 12. This indicates that our model predicted substrate predictions
show patterns of downstream fining consistent with this well-estab-
lished relationship.

A very wide range of empirical diminution coefficients have pre-
viously been reported (Rice, 1999), with overall dependence of the
coefficient on catchment area and thus on the scale of the river system
(Hoey and Bluck, 1999). In this study, diminution coefficients for the
Dso ranged from 1.18 x 10" ®km™! for the Waitaki River to
5.08 x 10~ >km ™! for the Kaituna River (Bay of Plenty region), and
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predicted downstream patterns were not always smooth exponential
curves. This indicates simple representations of downstream fining (e.g.
Eq. (1)) may not be sufficient to represent national scale patterns in
substrate patterns because between-catchment variations in diminution
coefficients result from landscape-scales processes driven by differences
in slope, sediment supply and stream power. Furthermore, changes in
downstream conditions, such as changes in sediment supply or hy-
drology which might occur at lakes or at major tributaries join together,
also interfere with downstream fining patterns. For example, many of
New Zealand's larger rivers flow through lakes (e.g. the Waitaki River)
and transition from mountain to lowland landscapes occur (e.g. the
Rakaia and Waimakariri) as they flow to the sea.

Three important issues should be noted when applying the predicted
values nationally. First, the predictive models were derived from visual
inspection of proportions of river bed surface covered by different ca-
tegories carried out as part of fish habitat studies. Surface layer grain-
size distributions will differ to sub-surface distributions, although
conversions can be applied to allow comparison (Kellerhals and Bray,
1971). Second, there is a variety of methods that can be used to
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Fig. 11. Box and whisker plots of D5, values for different type of rivers and stream orders. Middle horizontal lines show medians. Boxes indicate quantiles. Whiskers at left and right of the
box indicates the 97.5th and 2.5th percentiles. See Snelder et al. (2005) for definitions of river types.

quantify sediment size distributions (Bunte and Abt, 2001), and care is
required when comparing predicted values with those collected using
contrasting sampling methods. Third, whilst the models were fitted to
data collected from sites across New Zealand, and from a variety of
river types, these data did not include deep (non-wadable) rivers.
Therefore, any applications and interpretation of the predictions should
note that the predictions represent bed surface observations rather than
sub-surface samples and that predictions made for large, deep rivers
may over-estimate proportions of larger size-fractions.
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4. Conclusion

Three models were tested for predicting substrate cover proportions
across New Zealand. The models deliberately represent varying ap-
proaches to selecting predictors, interactions between predictors, and
ability to include uncertainty. Final predictions of each substrate cate-
gory were based on the best performing model for that category (as
assessed using 10-fold cross-validation). 10-fold cross validation
showed summed normal distribution models provided the best esti-
mates for four, out of seven, categories of substrate cover proportions.
Random forest models provided better performing estimations for three
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Fig. 12. Long-profiles of predicted sediment sizes for rivers mapped in Fig. 1. Dye, Dso and Dgy4 are grain sizes for which 16%, 50% and 84% of the predicted sediments are finer,

respectively.

of the substrate categories. Generalised linear models fitted using a
deliberately simple set of predictors did not out-perform the other two
methods, but were still able to provide explanatory power on patterns
of substrate cover proportions. This indicates that patterns in substrate
are related to simple representations of hydrological patterns and
landscape setting, but that predictor interactions and flexible relation-
ships were required to allow improvements in predictive power.
Dividing the dataset geographically into North Island and South Island
sites to perform regional cross validation was used to test the generality
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of model predictions outside the area they were calibrated in. These
results were worse than the 10-fold cross-validation suggesting that
model results should be treated with caution in regions where few ca-
libration data were available. In particular, pbias results were much
worse in the regional validation highlighting that significant bias is
likely in areas where no training data are available. The summed
normal distribution model was less biased and showed better predictive
power than the other models in the regional calibration.

A combination of best performing methods (as assessed in the 10-
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fold validation) was used to derive the most accurate models for all
substrate categories across the New Zealand river network. Results in-
dicate general increase of the fine fractions and decrease of coarse
fractions in higher stream orders. This is consistent with textbook
geomorphological relationships for downstream fining. The national
predictions will be useful for a wide range of national scale applications
such as: assessing the representativeness of monitoring sites, species
distribution monitoring, and assessing habitat quality.

One disadvantage of selecting the best performing models is that
they were not designed to explore the impact of potential future con-
ditions resulting from: climate change (e.g. changes in rainfall), land
cover management (e.g. decreasing conservation areas) or hydrological
alteration (e.g. increased abstraction). Despite this methodology, some
relationships between predictors and the various substrate categories
aligned with a theoretical physically basis for landscape-scale controls
on sediment deposition. For example, landcover influenced finer sizes
only, whereas the importance of slope decreased as grain size de-
creased.
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